{"title":"Production Of Optical Fibres For Telecommunication With The PCVD Process","authors":"Gerard Kuijt","doi":"10.1117/12.941594","DOIUrl":null,"url":null,"abstract":"In this paper an overview is given of the PCVD process as applied for the large scale production of optical fibres for telecommunication. The specific merits and potentials of the process, such as the profile independent high deposition rate and excellent controllability are discribed. The current state of the art of the process, as it is used in the Eindhoven production unit, is a deposition rate of 1 g/min., a preform size equivalent to 28 km of fibre and a drawing speed of 4 m/s. Fibre characteristics are well within the requirements imposed by the telecommunication market. The PCVD process has also proven to be suited for the production of dispersion flattened singlemode fibres and high NA graded index fibres for short distance applications. For both fibre types the high refractive index differences obtained with fluorine doping are exploited. Depending upon the market demands all fibre types can be manufactured at the same productivity. Some trends are given towards further increase of productivity and reduction of fibre costs.","PeriodicalId":127161,"journal":{"name":"Hague International Symposium","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hague International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.941594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper an overview is given of the PCVD process as applied for the large scale production of optical fibres for telecommunication. The specific merits and potentials of the process, such as the profile independent high deposition rate and excellent controllability are discribed. The current state of the art of the process, as it is used in the Eindhoven production unit, is a deposition rate of 1 g/min., a preform size equivalent to 28 km of fibre and a drawing speed of 4 m/s. Fibre characteristics are well within the requirements imposed by the telecommunication market. The PCVD process has also proven to be suited for the production of dispersion flattened singlemode fibres and high NA graded index fibres for short distance applications. For both fibre types the high refractive index differences obtained with fluorine doping are exploited. Depending upon the market demands all fibre types can be manufactured at the same productivity. Some trends are given towards further increase of productivity and reduction of fibre costs.