3D Data Acquisition and Registration Using Two Opposing Kinects

Vahid Soleimani, M. Mirmehdi, D. Damen, S. Hannuna, M. Camplani
{"title":"3D Data Acquisition and Registration Using Two Opposing Kinects","authors":"Vahid Soleimani, M. Mirmehdi, D. Damen, S. Hannuna, M. Camplani","doi":"10.1109/3DV.2016.21","DOIUrl":null,"url":null,"abstract":"We present an automatic, open source data acquisition and calibration approach using two opposing RGBD sensors (Kinect V2) and demonstrate its efficacy for dynamic object reconstruction in the context of monitoring for remote lung function assessment. First, the relative pose of the two RGBD sensors is estimated through a calibration stage and rigid transformation parameters are computed. These are then used to align and register point clouds obtained from the sensors at frame level. We validated the proposed system by performing experiments on known-size box objects with the results demonstrating accurate measurements. We also report on dynamic object reconstruction by way of human subjects undergoing respiratory functional assessment.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We present an automatic, open source data acquisition and calibration approach using two opposing RGBD sensors (Kinect V2) and demonstrate its efficacy for dynamic object reconstruction in the context of monitoring for remote lung function assessment. First, the relative pose of the two RGBD sensors is estimated through a calibration stage and rigid transformation parameters are computed. These are then used to align and register point clouds obtained from the sensors at frame level. We validated the proposed system by performing experiments on known-size box objects with the results demonstrating accurate measurements. We also report on dynamic object reconstruction by way of human subjects undergoing respiratory functional assessment.
三维数据采集和注册使用两个相对的运动
我们提出了一种自动、开源的数据采集和校准方法,使用两个相反的RGBD传感器(Kinect V2),并证明了其在远程肺功能评估监测背景下动态物体重建的有效性。首先,通过标定阶段估计两个RGBD传感器的相对位姿,并计算刚性变换参数;然后用这些来对齐和配准从帧级传感器获得的点云。我们通过在已知尺寸的盒子物体上进行实验来验证所提出的系统,结果显示出精确的测量结果。我们还报道了通过人体受试者进行呼吸功能评估的动态物体重建方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信