Vahid Soleimani, M. Mirmehdi, D. Damen, S. Hannuna, M. Camplani
{"title":"3D Data Acquisition and Registration Using Two Opposing Kinects","authors":"Vahid Soleimani, M. Mirmehdi, D. Damen, S. Hannuna, M. Camplani","doi":"10.1109/3DV.2016.21","DOIUrl":null,"url":null,"abstract":"We present an automatic, open source data acquisition and calibration approach using two opposing RGBD sensors (Kinect V2) and demonstrate its efficacy for dynamic object reconstruction in the context of monitoring for remote lung function assessment. First, the relative pose of the two RGBD sensors is estimated through a calibration stage and rigid transformation parameters are computed. These are then used to align and register point clouds obtained from the sensors at frame level. We validated the proposed system by performing experiments on known-size box objects with the results demonstrating accurate measurements. We also report on dynamic object reconstruction by way of human subjects undergoing respiratory functional assessment.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We present an automatic, open source data acquisition and calibration approach using two opposing RGBD sensors (Kinect V2) and demonstrate its efficacy for dynamic object reconstruction in the context of monitoring for remote lung function assessment. First, the relative pose of the two RGBD sensors is estimated through a calibration stage and rigid transformation parameters are computed. These are then used to align and register point clouds obtained from the sensors at frame level. We validated the proposed system by performing experiments on known-size box objects with the results demonstrating accurate measurements. We also report on dynamic object reconstruction by way of human subjects undergoing respiratory functional assessment.