COVID-19 Chest X-Ray Detection Performance Through Variations of Wavelets Basis Function

I. G. A. D. Indradewi, N. Saraswati, Ni Wayan Wardani
{"title":"COVID-19 Chest X-Ray Detection Performance Through Variations of Wavelets Basis Function","authors":"I. G. A. D. Indradewi, N. Saraswati, Ni Wayan Wardani","doi":"10.30812/matrik.v21i1.1089","DOIUrl":null,"url":null,"abstract":"Our previous work regarding the X-Ray detection of COVID-19 using Haar wavelet feature extraction and the Support Vector Machines (SVM) classification machine has shown that the combination of the two methods can detect COVID-19 well but then the question arises whether the Haar wavelet is the best wavelet method. So that in this study we conducted experiments on several wavelet methods such as biorthogonal, coiflet, Daubechies, haar, and symlets for chest X-Ray feature extraction with the same dataset. The results of the feature extraction are then classified using SVM and measure the quality of the classification model with parameters of accuracy, error rate, recall, specification, and precision. The results showed that the Daubechies wavelet gave the best performance for all classification quality parameters. The Daubechies wavelet transformation gave 95.47% accuracy, 4.53% error rate, 98.75% recall, 92.19% specificity, and 93.45% precision.","PeriodicalId":364657,"journal":{"name":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","volume":"250 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30812/matrik.v21i1.1089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Our previous work regarding the X-Ray detection of COVID-19 using Haar wavelet feature extraction and the Support Vector Machines (SVM) classification machine has shown that the combination of the two methods can detect COVID-19 well but then the question arises whether the Haar wavelet is the best wavelet method. So that in this study we conducted experiments on several wavelet methods such as biorthogonal, coiflet, Daubechies, haar, and symlets for chest X-Ray feature extraction with the same dataset. The results of the feature extraction are then classified using SVM and measure the quality of the classification model with parameters of accuracy, error rate, recall, specification, and precision. The results showed that the Daubechies wavelet gave the best performance for all classification quality parameters. The Daubechies wavelet transformation gave 95.47% accuracy, 4.53% error rate, 98.75% recall, 92.19% specificity, and 93.45% precision.
基于小波基函数变化的COVID-19胸部x射线检测性能
我们之前使用Haar小波特征提取和支持向量机(SVM)分类机对COVID-19进行x射线检测的工作表明,这两种方法的结合可以很好地检测COVID-19,但问题是Haar小波是否是最好的小波方法。因此,在本研究中,我们对相同数据集的双正交、coiflet、Daubechies、haar和symlets等几种小波方法进行了实验,用于胸部x射线特征提取。然后使用SVM对特征提取的结果进行分类,并以准确率、错误率、召回率、规格和精度等参数衡量分类模型的质量。结果表明,Daubechies小波在所有分类质量参数上表现最好。Daubechies小波变换的准确率为95.47%,错误率为4.53%,召回率为98.75%,特异性为92.19%,精密度为93.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信