Integration of prior information in Kaplan Meier estimator using Bayesian approach

Ahmed Hamimes
{"title":"Integration of prior information in Kaplan Meier estimator using Bayesian approach","authors":"Ahmed Hamimes","doi":"10.57056/ajb.v1i2.30","DOIUrl":null,"url":null,"abstract":"As part of this contribution, we will illustrate the effectiveness of the Bayesian approach in estimating durations; we suggest a new definition of the Kaplan Meier Bayesian estimator based on a stochastic approximation under an informative prior. For this reason, based on the lognormal distribution, we have unconjugated a priori distributions. This method of processing makes it possible to assume that the use of the a priori data with the various suggested methods is sensitive to the choices of the parameters added.","PeriodicalId":431221,"journal":{"name":"Algerian Journal of Biosciences","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algerian Journal of Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57056/ajb.v1i2.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As part of this contribution, we will illustrate the effectiveness of the Bayesian approach in estimating durations; we suggest a new definition of the Kaplan Meier Bayesian estimator based on a stochastic approximation under an informative prior. For this reason, based on the lognormal distribution, we have unconjugated a priori distributions. This method of processing makes it possible to assume that the use of the a priori data with the various suggested methods is sensitive to the choices of the parameters added.
用贝叶斯方法集成Kaplan Meier估计中的先验信息
作为这一贡献的一部分,我们将说明贝叶斯方法在估计持续时间方面的有效性;我们提出了基于信息先验下的随机近似的Kaplan Meier贝叶斯估计量的新定义。因此,基于对数正态分布,我们有非共轭的先验分布。这种处理方法使得可以假设使用各种建议方法的先验数据对添加参数的选择是敏感的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信