A novel estimation methodology for tracheal pressure in mechanical ventilation control

M. Ajčević, A. D. Lorenzo, P. Accardo, Alberto Bartoli, Eric Medvet
{"title":"A novel estimation methodology for tracheal pressure in mechanical ventilation control","authors":"M. Ajčević, A. D. Lorenzo, P. Accardo, Alberto Bartoli, Eric Medvet","doi":"10.1109/ISPA.2013.6703827","DOIUrl":null,"url":null,"abstract":"High-frequency percussive ventilation (HFPV) is a non-conventional mechanical ventilatory strategy which has proven useful in the treatment of a number of pathological conditions. HFPV usually involves the usage of endotracheal tubes (EET) connecting the ventilator circuit to the airway of the patient. The pressure of the air flow insufflated by HFPV must be controlled very accurately in order to avoid barotrauma and volutrauma. Since the actual tracheal pressure cannot be measured, a model for estimating such a pressure based on the EET properties and on the air flow properties that can actually be measured in clinical practice is necessary. In this work we propose a novel methodology, based on Genetic Programming, for synthesizing such a model. We experimentally evaluated our models against the state-of-the-art baseline models, crafted by human experts, and found that our models for estimating tracheal pressure are significantly more accurate.","PeriodicalId":425029,"journal":{"name":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2013.6703827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

High-frequency percussive ventilation (HFPV) is a non-conventional mechanical ventilatory strategy which has proven useful in the treatment of a number of pathological conditions. HFPV usually involves the usage of endotracheal tubes (EET) connecting the ventilator circuit to the airway of the patient. The pressure of the air flow insufflated by HFPV must be controlled very accurately in order to avoid barotrauma and volutrauma. Since the actual tracheal pressure cannot be measured, a model for estimating such a pressure based on the EET properties and on the air flow properties that can actually be measured in clinical practice is necessary. In this work we propose a novel methodology, based on Genetic Programming, for synthesizing such a model. We experimentally evaluated our models against the state-of-the-art baseline models, crafted by human experts, and found that our models for estimating tracheal pressure are significantly more accurate.
机械通气控制中气管压力的一种新的估计方法
高频冲击通气(HFPV)是一种非传统的机械通气策略,已被证明在治疗许多病理条件下是有用的。HFPV通常涉及使用气管内管(EET)将呼吸机回路连接到患者的气道。为了避免气压损伤和容积损伤,必须精确地控制HFPV充气气流的压力。由于实际的气管压力无法测量,因此有必要建立一个基于EET特性和临床实际可测量的气流特性的模型来估计气管压力。在这项工作中,我们提出了一种基于遗传规划的新方法来综合这种模型。我们通过实验评估了我们的模型与人类专家制作的最先进的基线模型,发现我们的模型用于估计气管压力的准确性要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信