Modeling of Time Series Data Prediction using Fruit Fly optimization Algorithm and Triple Exponential Smoothing

Ryan Putranda Kristianto
{"title":"Modeling of Time Series Data Prediction using Fruit Fly optimization Algorithm and Triple Exponential Smoothing","authors":"Ryan Putranda Kristianto","doi":"10.1109/ICITISEE48480.2019.9003895","DOIUrl":null,"url":null,"abstract":"This paper proposes a Prediction model, which optimizes the Triple Exponential Smoothing (TES) alpha, beta and gamma parameter algorithm using Fruit Fly optimization Algorithm (FOA) algorithm to predict time series data. Based on the research of previous authors, the TES algorithm is very likely to be sensitive to changes in the constants to the 3 parameters, where to do benchmarking it results use the MAPE method. Therefore, the authors limit this research by optimizing the parameters of the TES algorithm with the FOA algorithm. The dataset used in this experimental study has datasets which obtained publicly from the data market website repository. From this study, it was found that combination of Fruit Fly optimization Algorithm – Triple Exponential Smoothing (FOA-TES) can predict the time series data well with the average MAPE of 6%, better than the TES with an increased MAPE as 4%.","PeriodicalId":380472,"journal":{"name":"2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITISEE48480.2019.9003895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a Prediction model, which optimizes the Triple Exponential Smoothing (TES) alpha, beta and gamma parameter algorithm using Fruit Fly optimization Algorithm (FOA) algorithm to predict time series data. Based on the research of previous authors, the TES algorithm is very likely to be sensitive to changes in the constants to the 3 parameters, where to do benchmarking it results use the MAPE method. Therefore, the authors limit this research by optimizing the parameters of the TES algorithm with the FOA algorithm. The dataset used in this experimental study has datasets which obtained publicly from the data market website repository. From this study, it was found that combination of Fruit Fly optimization Algorithm – Triple Exponential Smoothing (FOA-TES) can predict the time series data well with the average MAPE of 6%, better than the TES with an increased MAPE as 4%.
基于果蝇优化算法和三指数平滑的时间序列数据预测建模
本文提出了一种预测模型,利用果蝇优化算法(FOA)算法对三指数平滑(TES) alpha、beta和gamma参数算法进行优化,对时间序列数据进行预测。根据之前作者的研究,TES算法很可能对这3个参数的常数变化很敏感,其中使用MAPE方法对其结果进行基准测试。因此,作者通过用FOA算法优化TES算法的参数来限制本研究。本实验研究中使用的数据集是从数据市场网站存储库中公开获得的数据集。本研究发现,结合果蝇优化算法-三重指数平滑(FOA-TES)可以很好地预测时间序列数据,平均MAPE为6%,优于MAPE增加4%的TES。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信