Triplet Mining-based Phishing Webpage Detection

Kalana Abeywardena, Jiawei Zhao, Lexi Brent, Suranga Seneviratne, Ralph Holz
{"title":"Triplet Mining-based Phishing Webpage Detection","authors":"Kalana Abeywardena, Jiawei Zhao, Lexi Brent, Suranga Seneviratne, Ralph Holz","doi":"10.1109/LCN48667.2020.9314828","DOIUrl":null,"url":null,"abstract":"Phishing web pages impersonate legitimate websites to trick users into entering sensitive information such as their credentials. In many high profile data breaches, the initial entry points have been traced back to phishing attacks. Attackers are using increasingly sophisticated methods such as code obfuscation to bypass existing phishing detection systems. Since phishing websites show very high visual similarity to the respective target pages, recent advances in Convolutional Neural Networks (CNN) can be leveraged to build better phishing detection systems. In this work, we propose a novel CNN architecture consisting of two paths to capture the content similarity and structural similarity between web pages. Leveraging the fact that web pages of the same web site are visually similar, we use triplet learning to train our model without any labelled phishing examples.","PeriodicalId":245782,"journal":{"name":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN48667.2020.9314828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phishing web pages impersonate legitimate websites to trick users into entering sensitive information such as their credentials. In many high profile data breaches, the initial entry points have been traced back to phishing attacks. Attackers are using increasingly sophisticated methods such as code obfuscation to bypass existing phishing detection systems. Since phishing websites show very high visual similarity to the respective target pages, recent advances in Convolutional Neural Networks (CNN) can be leveraged to build better phishing detection systems. In this work, we propose a novel CNN architecture consisting of two paths to capture the content similarity and structural similarity between web pages. Leveraging the fact that web pages of the same web site are visually similar, we use triplet learning to train our model without any labelled phishing examples.
基于三元组挖掘的钓鱼网页检测
网络钓鱼网页冒充合法网站,诱骗用户输入诸如凭据之类的敏感信息。在许多引人注目的数据泄露事件中,最初的入口点都可以追溯到网络钓鱼攻击。攻击者正在使用越来越复杂的方法,如代码混淆来绕过现有的网络钓鱼检测系统。由于网络钓鱼网站与各自的目标页面显示出非常高的视觉相似性,卷积神经网络(CNN)的最新进展可以用来构建更好的网络钓鱼检测系统。在这项工作中,我们提出了一种新颖的CNN架构,该架构由两条路径组成,用于捕获网页之间的内容相似性和结构相似性。利用同一网站的网页在视觉上相似的事实,我们使用三元学习来训练我们的模型,而不需要任何标记的网络钓鱼示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信