Performance of quickest spectrum sensing over various fading channels

E. Hanafi, Philippa A. Martin, Peter J. Smith, A. Coulson
{"title":"Performance of quickest spectrum sensing over various fading channels","authors":"E. Hanafi, Philippa A. Martin, Peter J. Smith, A. Coulson","doi":"10.1109/AusCTW.2013.6510047","DOIUrl":null,"url":null,"abstract":"In this paper, we study the performance of quickest spectrum sensing when the received signal experiences various fading conditions, including the time-invariant, Rayleigh, Rician, Nakagami-m and the F channel. We prove that the power of the complex received signal is a sufficient statistic and derive the probability density function of the received signal amplitude for all of these fading cases. Simulation results reveal that the sensing performance degrades with the severity of the fading as well as the level of temporal correlation. We also consider mis-matched channel conditions and show that the average detection delay depends greatly on the channel but very little on the nature of the detector.","PeriodicalId":177106,"journal":{"name":"2013 Australian Communications Theory Workshop (AusCTW)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Australian Communications Theory Workshop (AusCTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AusCTW.2013.6510047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we study the performance of quickest spectrum sensing when the received signal experiences various fading conditions, including the time-invariant, Rayleigh, Rician, Nakagami-m and the F channel. We prove that the power of the complex received signal is a sufficient statistic and derive the probability density function of the received signal amplitude for all of these fading cases. Simulation results reveal that the sensing performance degrades with the severity of the fading as well as the level of temporal correlation. We also consider mis-matched channel conditions and show that the average detection delay depends greatly on the channel but very little on the nature of the detector.
在各种衰落信道上的最快频谱感知性能
在本文中,我们研究了接收信号经历各种衰落条件时的最快频谱感知性能,包括时不变、瑞利、瑞利、中加米和F信道。我们证明了接收信号的复功率是一个充分的统计量,并推导了接收信号幅值的概率密度函数。仿真结果表明,感知性能随衰落的严重程度和时间相关水平而下降。我们还考虑了不匹配的信道条件,并表明平均检测延迟很大程度上取决于信道,而很少取决于检测器的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信