HDACC: a heuristic density-based ant colony clustering algorithm

Yun-Fei Chen, C. A. Fattah, Yu-shu Liu, Gangway Yan
{"title":"HDACC: a heuristic density-based ant colony clustering algorithm","authors":"Yun-Fei Chen, C. A. Fattah, Yu-shu Liu, Gangway Yan","doi":"10.1109/IAT.2004.1342980","DOIUrl":null,"url":null,"abstract":"We present a new heuristic density-based ant colony clustering algorithm (HDACC). Firstly, the device of \"memory bank\" is proposed, which can bring forth heuristic knowledge guiding an ant to move in the bi-dimensional grid space. Hence the randomness of the ant's motion decreases and algorithm convergence speeds up. In addition, the memory bank makes it possible for every object to be inspected before the algorithm is terminated, which avoids the production of an \"unassigned data object\". So the classification error rate drops subsequently. Secondly, we proposed a density-based method which permits each ant to \"look ahead\", which reduces the times of region-inquiry. Consequently, clustering time is saved. We carried out experiments on real data sets and synthetic data sets. The results demonstrated that HDBCSI is a viable and effective clustering algorithm.","PeriodicalId":281008,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAT.2004.1342980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a new heuristic density-based ant colony clustering algorithm (HDACC). Firstly, the device of "memory bank" is proposed, which can bring forth heuristic knowledge guiding an ant to move in the bi-dimensional grid space. Hence the randomness of the ant's motion decreases and algorithm convergence speeds up. In addition, the memory bank makes it possible for every object to be inspected before the algorithm is terminated, which avoids the production of an "unassigned data object". So the classification error rate drops subsequently. Secondly, we proposed a density-based method which permits each ant to "look ahead", which reduces the times of region-inquiry. Consequently, clustering time is saved. We carried out experiments on real data sets and synthetic data sets. The results demonstrated that HDBCSI is a viable and effective clustering algorithm.
一种启发式的基于密度的蚁群聚类算法
提出了一种基于启发式密度的蚁群聚类算法(HDACC)。首先,提出了“记忆库”装置,该装置可以产生启发式知识,引导蚂蚁在二维网格空间中移动;因此蚂蚁运动的随机性降低,算法收敛速度加快。此外,内存库使得在算法终止之前检查每个对象成为可能,从而避免了“未分配数据对象”的产生。因此分类错误率随之下降。其次,我们提出了一种基于密度的方法,允许每个蚂蚁“向前看”,从而减少了区域查询的次数。因此,可以节省集群时间。我们在真实数据集和合成数据集上进行了实验。结果表明,HDBCSI是一种可行且有效的聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信