{"title":"Authentication from Matrix Conjugation","authors":"D. Grigoriev, V. Shpilrain","doi":"10.1515/GCC.2009.199","DOIUrl":null,"url":null,"abstract":"We propose an authentication scheme where forgery (a.k.a. impersonation) seems infeasible without finding the prover's long-term private key. The latter would follow from solving the conjugacy search problem in the platform (noncommutative) semigroup, i.e., to recovering X from X –1 AX and A. The platform semigroup that we suggest here is the semigroup of n × n matrices over truncated multivariable polynomials over a ring.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/GCC.2009.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
We propose an authentication scheme where forgery (a.k.a. impersonation) seems infeasible without finding the prover's long-term private key. The latter would follow from solving the conjugacy search problem in the platform (noncommutative) semigroup, i.e., to recovering X from X –1 AX and A. The platform semigroup that we suggest here is the semigroup of n × n matrices over truncated multivariable polynomials over a ring.