Mammalian Species Detection Using a Cascade of Unet and SqueezeNet

Michael Njeru, C. Maina, K. Langat
{"title":"Mammalian Species Detection Using a Cascade of Unet and SqueezeNet","authors":"Michael Njeru, C. Maina, K. Langat","doi":"10.1109/africon51333.2021.9570950","DOIUrl":null,"url":null,"abstract":"Monitoring of wild animals has taken different approaches with an aim to provide vital information used in animal protection in their natural habitats. To recognize animal species without human trackers requires machine learning models that extract specie's features from an image. This project proposes a method of counting animals in an image and specifying the species of each animal using Unet and a variant of the SqueezeNet model. To train the Unet model, images and corresponding masks are used as the training data. Different optimizers are applied to each model. During inference, Unet outputs a binary mask with ones where an animal is detected and zeros elsewhere. SqueezeNet model is trained with images corresponding to six classes: bushbuck, impala, llama, warthog, waterbuck, and zebra. Three variants of the SqueezeNet model have been trained. The first contains the original backbone while the other two have the original backbone with an additional fire module. In one model the Fire module is similar to the Fire modules of the original backbone while in the other model, the extra fire module contains batch normalization layers. The trained models show that Unet trained with Nadam optimizer achieves the highest dice coefficient while the SqueezeNet with an extra Fire module containing batch norm layers and RMSprop optimizer achieves the highest training accuracy. The combined system containing the two models takes an image and outputs the image with bounding boxes around each animal and the corresponding animal species. The system achieves both counting and recognition of the species for each image placed at the input.","PeriodicalId":170342,"journal":{"name":"2021 IEEE AFRICON","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE AFRICON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/africon51333.2021.9570950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring of wild animals has taken different approaches with an aim to provide vital information used in animal protection in their natural habitats. To recognize animal species without human trackers requires machine learning models that extract specie's features from an image. This project proposes a method of counting animals in an image and specifying the species of each animal using Unet and a variant of the SqueezeNet model. To train the Unet model, images and corresponding masks are used as the training data. Different optimizers are applied to each model. During inference, Unet outputs a binary mask with ones where an animal is detected and zeros elsewhere. SqueezeNet model is trained with images corresponding to six classes: bushbuck, impala, llama, warthog, waterbuck, and zebra. Three variants of the SqueezeNet model have been trained. The first contains the original backbone while the other two have the original backbone with an additional fire module. In one model the Fire module is similar to the Fire modules of the original backbone while in the other model, the extra fire module contains batch normalization layers. The trained models show that Unet trained with Nadam optimizer achieves the highest dice coefficient while the SqueezeNet with an extra Fire module containing batch norm layers and RMSprop optimizer achieves the highest training accuracy. The combined system containing the two models takes an image and outputs the image with bounding boxes around each animal and the corresponding animal species. The system achieves both counting and recognition of the species for each image placed at the input.
使用Unet和SqueezeNet级联的哺乳动物物种检测
对野生动物的监测采取了不同的方法,目的是提供重要的信息,用于保护其自然栖息地的动物。要在没有人类追踪器的情况下识别动物物种,需要机器学习模型从图像中提取物种特征。这个项目提出了一种计算图像中动物数量的方法,并使用Unet和SqueezeNet模型的一个变体来指定每种动物的种类。为了训练Unet模型,使用图像和相应的掩码作为训练数据。不同的优化器应用于每个模型。在推理过程中,Unet输出一个二进制掩码,在检测到动物的地方为1,在其他地方为0。SqueezeNet模型使用六个类的图像进行训练:羚羊、黑斑羚、美洲驼、疣猪、水羚和斑马。已经训练了SqueezeNet模型的三个变体。第一个包含原始主干网,而其他两个具有原始主干网和附加的火力模块。在一个模型中,Fire模块类似于原始骨干的Fire模块,而在另一个模型中,额外的Fire模块包含批量规范化层。经过训练的模型表明,使用Nadam优化器训练的Unet获得了最高的骰子系数,而使用含有批规范层和RMSprop优化器的额外Fire模块的SqueezeNet获得了最高的训练精度。包含这两种模型的组合系统获取图像,并在每个动物及其对应的动物物种周围输出带有边界框的图像。该系统对输入的每张图像都实现了物种的计数和识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信