In-Process Tool Deflection Measurement in Incremental Sheet Metal Forming

M. Terlau, A. Freyberg, D. Stöbener, A. Fischer
{"title":"In-Process Tool Deflection Measurement in Incremental Sheet Metal Forming","authors":"M. Terlau, A. Freyberg, D. Stöbener, A. Fischer","doi":"10.1109/SAS54819.2022.9881345","DOIUrl":null,"url":null,"abstract":"Incremental sheet forming is an economical alternative to deep drawing for forming large sheets in small quantities. However, the shape deviations resulting from a process-force-caused tool deflection limits the measuring accuracy. Therefore, an optical multi-sensor system is proposed to enable the contactless in-process measurement of the tool deflection independent of the machine kinematics for the first time. The presented design study of the sensor system aims to meet the requirement of a maximal measurement uncertainty of 15 µm at a measuring distance of up to 2 m. The multi-sensor system consists of a large number of inexpensive angulation sensors, each of which measures an angle to a light source on the tool. Based on the measured angles of all sensors calibrated to each other, the position of the tool in the three-dimensional manufacturing volume can be calculated by multi-angulation. Via experimental characterization of a realized angulation sensor as well as an uncertainty propagation, the measurement uncertainty achievable with the overall system is estimated. As a result, the multi-sensor concept fulfills all requirements for the measurement of the tool deflection in incremental sheet metal forming.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Incremental sheet forming is an economical alternative to deep drawing for forming large sheets in small quantities. However, the shape deviations resulting from a process-force-caused tool deflection limits the measuring accuracy. Therefore, an optical multi-sensor system is proposed to enable the contactless in-process measurement of the tool deflection independent of the machine kinematics for the first time. The presented design study of the sensor system aims to meet the requirement of a maximal measurement uncertainty of 15 µm at a measuring distance of up to 2 m. The multi-sensor system consists of a large number of inexpensive angulation sensors, each of which measures an angle to a light source on the tool. Based on the measured angles of all sensors calibrated to each other, the position of the tool in the three-dimensional manufacturing volume can be calculated by multi-angulation. Via experimental characterization of a realized angulation sensor as well as an uncertainty propagation, the measurement uncertainty achievable with the overall system is estimated. As a result, the multi-sensor concept fulfills all requirements for the measurement of the tool deflection in incremental sheet metal forming.
渐进式钣金成形过程中刀具挠度测量
增量板成形是一种经济的替代深拉深成形大板在小批量。然而,由加工力引起的刀具偏转导致的形状偏差限制了测量精度。因此,提出了一种光学多传感器系统,首次实现了与机床运动学无关的刀具挠度的非接触式过程测量。提出的传感器系统设计研究旨在满足测量距离为2 m时最大测量不确定度为15 μ m的要求。多传感器系统由大量廉价的角度传感器组成,每个传感器测量工具上光源的角度。根据测量到的各传感器相互校准的角度,可以通过多角度计算出刀具在三维制造体中的位置。通过对所实现的角度传感器的实验表征和不确定度传播,估计了整个系统可实现的测量不确定度。因此,多传感器概念满足了增量钣金成形中刀具挠度测量的所有要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信