{"title":"In-Process Tool Deflection Measurement in Incremental Sheet Metal Forming","authors":"M. Terlau, A. Freyberg, D. Stöbener, A. Fischer","doi":"10.1109/SAS54819.2022.9881345","DOIUrl":null,"url":null,"abstract":"Incremental sheet forming is an economical alternative to deep drawing for forming large sheets in small quantities. However, the shape deviations resulting from a process-force-caused tool deflection limits the measuring accuracy. Therefore, an optical multi-sensor system is proposed to enable the contactless in-process measurement of the tool deflection independent of the machine kinematics for the first time. The presented design study of the sensor system aims to meet the requirement of a maximal measurement uncertainty of 15 µm at a measuring distance of up to 2 m. The multi-sensor system consists of a large number of inexpensive angulation sensors, each of which measures an angle to a light source on the tool. Based on the measured angles of all sensors calibrated to each other, the position of the tool in the three-dimensional manufacturing volume can be calculated by multi-angulation. Via experimental characterization of a realized angulation sensor as well as an uncertainty propagation, the measurement uncertainty achievable with the overall system is estimated. As a result, the multi-sensor concept fulfills all requirements for the measurement of the tool deflection in incremental sheet metal forming.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Incremental sheet forming is an economical alternative to deep drawing for forming large sheets in small quantities. However, the shape deviations resulting from a process-force-caused tool deflection limits the measuring accuracy. Therefore, an optical multi-sensor system is proposed to enable the contactless in-process measurement of the tool deflection independent of the machine kinematics for the first time. The presented design study of the sensor system aims to meet the requirement of a maximal measurement uncertainty of 15 µm at a measuring distance of up to 2 m. The multi-sensor system consists of a large number of inexpensive angulation sensors, each of which measures an angle to a light source on the tool. Based on the measured angles of all sensors calibrated to each other, the position of the tool in the three-dimensional manufacturing volume can be calculated by multi-angulation. Via experimental characterization of a realized angulation sensor as well as an uncertainty propagation, the measurement uncertainty achievable with the overall system is estimated. As a result, the multi-sensor concept fulfills all requirements for the measurement of the tool deflection in incremental sheet metal forming.