Efstratios Kakaletsis, O. Zoidi, A. Tefas, N. Nikolaidis, I. Pitas
{"title":"Fast label propagation on facial images using a pruned similarity matrix","authors":"Efstratios Kakaletsis, O. Zoidi, A. Tefas, N. Nikolaidis, I. Pitas","doi":"10.1109/DMIAF.2016.7574911","DOIUrl":null,"url":null,"abstract":"The label propagation process, which is often used to semantically annotate (tag) large amounts of multimedia data assets must be fast, in order to be efficient. In this paper, a novel facial images fast labeling method that is essentially a semi-supervised face recognition approach, is presented. The proposed method is based on the acceleration of a state of the art facial identity label propagation technique. The new method is called pruned label propagation due to the fact that the facial label inference is conducted using a similarity matrix containing fewer entries, namely the pairwise similarities that reside in the main and the off-diagonals of this matrix. Experiments conducted on facial image labeling in three stereoscopic movies, confirm the increased labeling accuracy and the reduced computational complexity of the proposed method.","PeriodicalId":404025,"journal":{"name":"2016 Digital Media Industry & Academic Forum (DMIAF)","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Digital Media Industry & Academic Forum (DMIAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMIAF.2016.7574911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The label propagation process, which is often used to semantically annotate (tag) large amounts of multimedia data assets must be fast, in order to be efficient. In this paper, a novel facial images fast labeling method that is essentially a semi-supervised face recognition approach, is presented. The proposed method is based on the acceleration of a state of the art facial identity label propagation technique. The new method is called pruned label propagation due to the fact that the facial label inference is conducted using a similarity matrix containing fewer entries, namely the pairwise similarities that reside in the main and the off-diagonals of this matrix. Experiments conducted on facial image labeling in three stereoscopic movies, confirm the increased labeling accuracy and the reduced computational complexity of the proposed method.