{"title":"Deterministic Data Reduction in Sensor Networks","authors":"Hüseyin Akcan, Hervé Brönnimann","doi":"10.1109/MOBHOC.2006.278602","DOIUrl":null,"url":null,"abstract":"The processing capabilities of wireless sensor nodes enable to aggregate redundant data to limit total data flow over the network. The main property of a good aggregation algorithm is to extract the most representative data by using minimum resources. From this point of view, sampling is a promising aggregation method, that acts as surrogate for the whole data, and once extracted can be used to answer multiple kinds of queries (such as AVG, MEDIAN, SUM, COUNT, etc.), at no extra cost. Additionally, sampling also preserves the correlation info within multi-dimensional data, which is quite valuable for further data mining. In this paper, we propose a novel, distributed, weighted sampling algorithm to sample sensor network data and compare to an existing random sampling algorithm, which to the best of our knowledge is the only algorithm to work in this kind of setting","PeriodicalId":345003,"journal":{"name":"2006 IEEE International Conference on Mobile Ad Hoc and Sensor Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Mobile Ad Hoc and Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOBHOC.2006.278602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The processing capabilities of wireless sensor nodes enable to aggregate redundant data to limit total data flow over the network. The main property of a good aggregation algorithm is to extract the most representative data by using minimum resources. From this point of view, sampling is a promising aggregation method, that acts as surrogate for the whole data, and once extracted can be used to answer multiple kinds of queries (such as AVG, MEDIAN, SUM, COUNT, etc.), at no extra cost. Additionally, sampling also preserves the correlation info within multi-dimensional data, which is quite valuable for further data mining. In this paper, we propose a novel, distributed, weighted sampling algorithm to sample sensor network data and compare to an existing random sampling algorithm, which to the best of our knowledge is the only algorithm to work in this kind of setting