A novel complexity reduced Levenberge-Marquardt algorithm: Application to the training of interval type-2 fuzzy systems

M. A. Khanesar, E. Kayacan
{"title":"A novel complexity reduced Levenberge-Marquardt algorithm: Application to the training of interval type-2 fuzzy systems","authors":"M. A. Khanesar, E. Kayacan","doi":"10.1109/FUZZ-IEEE.2017.8015737","DOIUrl":null,"url":null,"abstract":"Levenberge-Marquardt (LM) algorithm is a well-known optimization technique which has the advantages of the steepest descent and the Gauss-Newton methods. Unfortunately, LM algorithm-based parameter update rules, regardless of being used to tune the parameters of artificial neural networks or neuro-fuzzy systems, require the calculation of inversion of high dimensional matrices. Matrix inversions are generally computationally expensive, and it is not desired in a real-time application where the computation speed is critical. In this paper, using matrix inversion lemma, LM algorithm is modified to avoid matrix inversion calculations, and therefore lessen its computational burden. The proposed algorithm is compared with the conventional LM algorithm for the training of interval type-2 fuzzy logic systems in terms of its speed. Extensive simulation results demonstrate that that the proposed novel method can increase the speed of LM algorithm by 50% while remaining the same performance.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Levenberge-Marquardt (LM) algorithm is a well-known optimization technique which has the advantages of the steepest descent and the Gauss-Newton methods. Unfortunately, LM algorithm-based parameter update rules, regardless of being used to tune the parameters of artificial neural networks or neuro-fuzzy systems, require the calculation of inversion of high dimensional matrices. Matrix inversions are generally computationally expensive, and it is not desired in a real-time application where the computation speed is critical. In this paper, using matrix inversion lemma, LM algorithm is modified to avoid matrix inversion calculations, and therefore lessen its computational burden. The proposed algorithm is compared with the conventional LM algorithm for the training of interval type-2 fuzzy logic systems in terms of its speed. Extensive simulation results demonstrate that that the proposed novel method can increase the speed of LM algorithm by 50% while remaining the same performance.
一种新的降低复杂度的Levenberge-Marquardt算法:在区间2型模糊系统训练中的应用
Levenberge-Marquardt (LM)算法是一种著名的优化技术,它具有最陡下降法和高斯-牛顿法的优点。遗憾的是,基于LM算法的参数更新规则,无论是用于人工神经网络还是神经模糊系统的参数调整,都需要计算高维矩阵的反演。矩阵反转通常在计算上是昂贵的,并且在计算速度至关重要的实时应用程序中是不希望的。本文利用矩阵反演引理对LM算法进行改进,避免了矩阵反演计算,从而减少了计算量。将该算法与传统的LM算法在训练区间2型模糊逻辑系统的速度方面进行了比较。大量的仿真结果表明,该方法在保持相同性能的情况下,将LM算法的速度提高了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信