Clustering of regional HDI data using Self-Organizing Maps

J. A. F. Costa, A. Pinto, Joao Ribeiro de Andrade, Marcial Guerra de Medeiros
{"title":"Clustering of regional HDI data using Self-Organizing Maps","authors":"J. A. F. Costa, A. Pinto, Joao Ribeiro de Andrade, Marcial Guerra de Medeiros","doi":"10.1109/LA-CCI.2017.8285699","DOIUrl":null,"url":null,"abstract":"The Municipal Human Development Index (HDI) was established by the United Nations Development Program. It uses data from longevity, education, and income to infer regional social and economic life quality. This work developed a multivariate analysis of the HDI data evolution in years 1991, 2000 and 2010 of 167 municipalities in Rio Grande do Norte State, northeast Brazil. Self-organizing (Kohonen or SOM) maps were used to perform clustering and data visualization. The approach uses map segmentation with k-means algorithm after SOM training. Transition analysis from municipalities in different studied years are performed, presenting ranking of clusters in terms of the three main HDI dimensions. Five groups of municipalities resulted from intragroup similarities and intergroup dissimilarities in each period. The segmented maps present similar municipalities. Thematic maps of the region after data clustering are also shown.","PeriodicalId":144567,"journal":{"name":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI.2017.8285699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Municipal Human Development Index (HDI) was established by the United Nations Development Program. It uses data from longevity, education, and income to infer regional social and economic life quality. This work developed a multivariate analysis of the HDI data evolution in years 1991, 2000 and 2010 of 167 municipalities in Rio Grande do Norte State, northeast Brazil. Self-organizing (Kohonen or SOM) maps were used to perform clustering and data visualization. The approach uses map segmentation with k-means algorithm after SOM training. Transition analysis from municipalities in different studied years are performed, presenting ranking of clusters in terms of the three main HDI dimensions. Five groups of municipalities resulted from intragroup similarities and intergroup dissimilarities in each period. The segmented maps present similar municipalities. Thematic maps of the region after data clustering are also shown.
基于自组织地图的区域HDI数据聚类
城市人类发展指数(HDI)由联合国开发计划署制定。它使用寿命、教育和收入数据来推断地区的社会和经济生活质量。这项工作对巴西东北部北里奥格兰德州167个城市1991年、2000年和2010年的HDI数据演变进行了多变量分析。自组织(Kohonen或SOM)地图用于进行聚类和数据可视化。该方法采用SOM训练后的k-means算法进行地图分割。对不同研究年份的城市进行了过渡分析,根据三个主要的HDI维度给出了集群的排名。在每个时期,群内相似性和群间差异性导致了5组城市。分割的地图显示了类似的城市。数据聚类后的区域专题图也显示出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信