Scheduling for minimizing the number of memory accesses in low power applications

R. Saied, C. Chakrabarti
{"title":"Scheduling for minimizing the number of memory accesses in low power applications","authors":"R. Saied, C. Chakrabarti","doi":"10.1109/VLSISP.1996.558322","DOIUrl":null,"url":null,"abstract":"The increasing demand for portable electronics has caused power consumption to be a critical issue in the design process. Reducing the total power consumption in portable systems is important in order to maximize the run time with minimum requirements in size and weight of the batteries. Power consumption in memory-intensive operations can be reduced by minimizing the number of memory accesses. We describe two scheduling schemes under fixed hardware resource constraints which reduce the number of memory accesses by minimizing the number of intermediate variables that need to be stored. While the first scheme achieves this by post order traversal of the DFG, the second scheme achieves this by judiciously delaying the scheduling of some of the nodes. Experimental results show that these schemes require significantly fewer memory accesses compared to existing scheduling schemes.","PeriodicalId":290885,"journal":{"name":"VLSI Signal Processing, IX","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI Signal Processing, IX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSISP.1996.558322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The increasing demand for portable electronics has caused power consumption to be a critical issue in the design process. Reducing the total power consumption in portable systems is important in order to maximize the run time with minimum requirements in size and weight of the batteries. Power consumption in memory-intensive operations can be reduced by minimizing the number of memory accesses. We describe two scheduling schemes under fixed hardware resource constraints which reduce the number of memory accesses by minimizing the number of intermediate variables that need to be stored. While the first scheme achieves this by post order traversal of the DFG, the second scheme achieves this by judiciously delaying the scheduling of some of the nodes. Experimental results show that these schemes require significantly fewer memory accesses compared to existing scheduling schemes.
在低功耗应用程序中最小化内存访问数量的调度
对便携式电子产品日益增长的需求使得功耗成为设计过程中的一个关键问题。降低便携式系统的总功耗是重要的,以最大限度地延长运行时间,最小的尺寸和重量的电池的要求。内存密集型操作中的功耗可以通过最小化内存访问次数来降低。我们描述了在固定硬件资源约束下的两种调度方案,它们通过最小化需要存储的中间变量的数量来减少内存访问的数量。第一种方案通过后序遍历DFG来实现这一点,而第二种方案通过明智地延迟一些节点的调度来实现这一点。实验结果表明,与现有调度方案相比,这些方案所需的内存访问量显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信