Guiding Genetic Algorithm via Viral Trait Spreading for Solving Sudoku Puzzle

Nico Saputro, V. Moertini
{"title":"Guiding Genetic Algorithm via Viral Trait Spreading for Solving Sudoku Puzzle","authors":"Nico Saputro, V. Moertini","doi":"10.1109/ICI.2011.33","DOIUrl":null,"url":null,"abstract":"Genetic Algorithms work iteratively from generation to generation to find the optimal solution of optimization problems. However, due to the probabilistic operations of Genetic Algorithms (GAs), the performance of GAs search is unpredictable. Even worst, GAs may not be able to find the optimal solution after very long iteration. We propose a solution that incorporates a human intervention to guide GA achieving a better performance. We adopt the Viral Trait Spreading Framework for human intervention in the GA operations. Firstly, we classify GAs operation and then put each group of operation in the Framework. Most of all genetic algorithm operations fall into the Trait Adoption component. We optimized the design of genetic representation and genetic operators to tackle the fixed element constraint and row permutation constraint of Sudoku puzzle. Then, we implemented our approach in net logo, a multiagent programmable modeling environment. Experiment results showed that GA is capable of finding the optimal solution and the human intervention through Viral Trait Spreading Framework guides the GA in searching processes in the narrower search space.","PeriodicalId":146712,"journal":{"name":"2011 First International Conference on Informatics and Computational Intelligence","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 First International Conference on Informatics and Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICI.2011.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic Algorithms work iteratively from generation to generation to find the optimal solution of optimization problems. However, due to the probabilistic operations of Genetic Algorithms (GAs), the performance of GAs search is unpredictable. Even worst, GAs may not be able to find the optimal solution after very long iteration. We propose a solution that incorporates a human intervention to guide GA achieving a better performance. We adopt the Viral Trait Spreading Framework for human intervention in the GA operations. Firstly, we classify GAs operation and then put each group of operation in the Framework. Most of all genetic algorithm operations fall into the Trait Adoption component. We optimized the design of genetic representation and genetic operators to tackle the fixed element constraint and row permutation constraint of Sudoku puzzle. Then, we implemented our approach in net logo, a multiagent programmable modeling environment. Experiment results showed that GA is capable of finding the optimal solution and the human intervention through Viral Trait Spreading Framework guides the GA in searching processes in the narrower search space.
基于病毒特征传播的引导遗传算法解数独
遗传算法是一种逐代迭代求解优化问题的算法。然而,由于遗传算法的概率运算,使得遗传算法的搜索性能难以预测。更糟糕的是,经过很长时间的迭代后,GAs可能无法找到最优解。我们提出了一个包含人工干预的解决方案来指导遗传算法实现更好的性能。我们采用病毒特征传播框架对遗传操作进行人为干预。首先对GAs操作进行分类,然后将每组操作放入框架中。大多数遗传算法操作都属于Trait采用组件。针对数独谜题的固定元素约束和行排列约束,优化了遗传表示和遗传算子的设计。然后,我们在net logo(一个多智能体可编程建模环境)中实现了我们的方法。实验结果表明,遗传算法能够找到最优解,通过病毒特征传播框架的人为干预指导遗传算法在更窄的搜索空间内进行搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信