Primary invariants of Hurwitz Frobenius manifolds

P. Dunin-Barkowski, Paul T. Norbury, N. Orantin, A. Popolitov, S. Shadrin
{"title":"Primary invariants of Hurwitz Frobenius\n manifolds","authors":"P. Dunin-Barkowski, Paul T. Norbury, N. Orantin, A. Popolitov, S. Shadrin","doi":"10.1090/pspum/100/01768","DOIUrl":null,"url":null,"abstract":"Hurwitz spaces parameterizing covers of the Riemann sphere can be equipped with a Frobenius structure. In this review, we recall the construction of such Hurwitz Frobenius manifolds as well as the correspondence between semisimple Frobenius manifolds and the topological recursion formalism. We then apply this correspondence to Hurwitz Frobenius manifolds by explaining that the corresponding primary invariants can be obtained as periods of multidifferentials globally defined on a compact Riemann surface by topological recursion. Finally, we use this construction to reply to the following question in a large class of cases: given a compact Riemann surface, what does the topological recursion compute?","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/pspum/100/01768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Hurwitz spaces parameterizing covers of the Riemann sphere can be equipped with a Frobenius structure. In this review, we recall the construction of such Hurwitz Frobenius manifolds as well as the correspondence between semisimple Frobenius manifolds and the topological recursion formalism. We then apply this correspondence to Hurwitz Frobenius manifolds by explaining that the corresponding primary invariants can be obtained as periods of multidifferentials globally defined on a compact Riemann surface by topological recursion. Finally, we use this construction to reply to the following question in a large class of cases: given a compact Riemann surface, what does the topological recursion compute?
Hurwitz Frobenius流形的初等不变量
黎曼球的Hurwitz空间参数化盖可以配备一个Frobenius结构。在这篇综述中,我们回顾了这种Hurwitz Frobenius流形的构造以及半简单Frobenius流形与拓扑递归形式主义的对应关系。然后,我们通过解释相应的初等不变量可以通过拓扑递归在紧黎曼曲面上全局定义的多微分周期来获得,从而将这种对应关系应用于Hurwitz Frobenius流形。最后,我们用这种构造来回答以下问题:给定一个紧致黎曼曲面,拓扑递归计算什么?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信