OHODIN – Online Anomaly Detection for Data Streams

Christian Gruhl, Sven Tomforde
{"title":"OHODIN – Online Anomaly Detection for Data Streams","authors":"Christian Gruhl, Sven Tomforde","doi":"10.1109/ACSOS-C52956.2021.00046","DOIUrl":null,"url":null,"abstract":"We propose OHODIN an online extension for data streams of the knn-based ODIN anomaly detection approach and presents a detection-threshold heuristic that is based on extreme value theory. In contrast to sophisticated anomaly and novelty detection approaches the decision-making process of ODIN is interpretable by humans, making it interesting for certain applications. This article presents the algorithms itself and an experimental evaluation with competing state-of-the-art anomaly detection approaches.","PeriodicalId":268224,"journal":{"name":"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)","volume":"8 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSOS-C52956.2021.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose OHODIN an online extension for data streams of the knn-based ODIN anomaly detection approach and presents a detection-threshold heuristic that is based on extreme value theory. In contrast to sophisticated anomaly and novelty detection approaches the decision-making process of ODIN is interpretable by humans, making it interesting for certain applications. This article presents the algorithms itself and an experimental evaluation with competing state-of-the-art anomaly detection approaches.
在线异常检测数据流
提出了基于已知的ODIN异常检测方法的数据流在线扩展,并提出了一种基于极值理论的检测阈值启发式算法。与复杂的异常和新颖性检测方法相比,ODIN的决策过程是可由人类解释的,这使得它对某些应用程序很有趣。本文介绍了算法本身,并与竞争的最先进的异常检测方法进行了实验评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信