Deep reinforcement learning based neuro-control for a two-dimensional magnetic positioning system

Eduardo Bejar, A. Morán
{"title":"Deep reinforcement learning based neuro-control for a two-dimensional magnetic positioning system","authors":"Eduardo Bejar, A. Morán","doi":"10.1109/ICCAR.2018.8384682","DOIUrl":null,"url":null,"abstract":"This paper presents a control scheme based on deep reinforcement learning for a two-dimensional positioning system with electromagnetic actuators. Two neuro-controllers are trained and used for controlling the X-Y position of an object. The neuro-controllers learning approach is based on the actor-critic architecture and the deep deterministic policy gradient (DDPG) algorithm using the Q-learning method. The performance of the control system is verified for different setpoints and working conditions.","PeriodicalId":106624,"journal":{"name":"2018 4th International Conference on Control, Automation and Robotics (ICCAR)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Control, Automation and Robotics (ICCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR.2018.8384682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

This paper presents a control scheme based on deep reinforcement learning for a two-dimensional positioning system with electromagnetic actuators. Two neuro-controllers are trained and used for controlling the X-Y position of an object. The neuro-controllers learning approach is based on the actor-critic architecture and the deep deterministic policy gradient (DDPG) algorithm using the Q-learning method. The performance of the control system is verified for different setpoints and working conditions.
基于深度强化学习的二维磁定位系统神经控制
提出了一种基于深度强化学习的二维电磁定位系统控制方案。两个神经控制器被训练并用于控制物体的X-Y位置。神经控制器的学习方法基于actor-critic架构和深度确定性策略梯度(DDPG)算法,采用Q-learning方法。在不同的设定值和工作条件下,验证了控制系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信