Biometric User Identification by Forearm EMG Analysis

Matus Pleva, Š. Korečko, D. Hládek, Patrick A. H. Bours, Markus Hoff Skudal, Y. Liao
{"title":"Biometric User Identification by Forearm EMG Analysis","authors":"Matus Pleva, Š. Korečko, D. Hládek, Patrick A. H. Bours, Markus Hoff Skudal, Y. Liao","doi":"10.1109/ICCE-Taiwan55306.2022.9869268","DOIUrl":null,"url":null,"abstract":"The recent experience in the use of virtual reality (VR) technology has shown that users prefer Electromyography (EMG) sensor-based controllers over hand controllers. The results presented in this paper show the potential of EMG-based controllers, in particular the Myo armband, to identify a computer system user. In the first scenario, we train various classifiers with 25 keyboard typing movements for training and test with 75. The results with a 1-dimensional convolutional neural network indicate that we are able to identify the user with an accuracy of 93% by analyzing only the EMG data from the Myo armband. When we use 75 moves for training, accuracy increases to 96.45% after cross-validation.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The recent experience in the use of virtual reality (VR) technology has shown that users prefer Electromyography (EMG) sensor-based controllers over hand controllers. The results presented in this paper show the potential of EMG-based controllers, in particular the Myo armband, to identify a computer system user. In the first scenario, we train various classifiers with 25 keyboard typing movements for training and test with 75. The results with a 1-dimensional convolutional neural network indicate that we are able to identify the user with an accuracy of 93% by analyzing only the EMG data from the Myo armband. When we use 75 moves for training, accuracy increases to 96.45% after cross-validation.
前臂肌电图分析的生物识别用户识别
最近使用虚拟现实(VR)技术的经验表明,用户更喜欢基于肌电(EMG)传感器的控制器而不是手动控制器。本文的结果显示了基于肌电图的控制器的潜力,特别是Myo臂带,以识别计算机系统用户。在第一个场景中,我们用25个键盘输入动作训练各种分类器,用75个键盘输入动作进行训练和测试。使用一维卷积神经网络的结果表明,仅通过分析来自Myo臂环的肌电图数据,我们就能够以93%的准确率识别用户。当我们使用75个动作进行训练时,经过交叉验证,准确率提高到96.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信