Multiple superconducting phases in heavy-fermion metals

E. Nica, S. Ran, L. Jiao, Q. Si
{"title":"Multiple superconducting phases in heavy-fermion metals","authors":"E. Nica, S. Ran, L. Jiao, Q. Si","doi":"10.3389/femat.2022.944873","DOIUrl":null,"url":null,"abstract":"Symmetry breaking beyond a global U(1) phase is the key signature of unconventional superconductors. As prototypical strongly correlated materials, heavy-fermion metals provide ideal platforms for realizing unconventional superconductivity. In this article, we review heavy-fermion superconductivity, with a focus on those materials with multiple superconducting phases. In this context, we highlight the role of orbital-selective (matrix) pairing functions, which are defined as matrices in the space of effective orbital degrees of freedom such as electronic orbitals and sublattices as well as equivalent descriptions in terms of intra- and inter-band pairing components in the band basis. The role of quantum criticality and the associated strange-metal physics in the development of unconventional superconductivity is emphasized throughout. We discuss in some detail the recent experimental observations and theoretical perspectives in the illustrative cases of UTe2, CeRh2As2, and CeCu2Si2, where applied magnetic fields or pressure induce a variety of superconducting phases. We close by providing a brief overview of overarching issues and implications for possible future directions.","PeriodicalId":119676,"journal":{"name":"Frontiers in Electronic Materials","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/femat.2022.944873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Symmetry breaking beyond a global U(1) phase is the key signature of unconventional superconductors. As prototypical strongly correlated materials, heavy-fermion metals provide ideal platforms for realizing unconventional superconductivity. In this article, we review heavy-fermion superconductivity, with a focus on those materials with multiple superconducting phases. In this context, we highlight the role of orbital-selective (matrix) pairing functions, which are defined as matrices in the space of effective orbital degrees of freedom such as electronic orbitals and sublattices as well as equivalent descriptions in terms of intra- and inter-band pairing components in the band basis. The role of quantum criticality and the associated strange-metal physics in the development of unconventional superconductivity is emphasized throughout. We discuss in some detail the recent experimental observations and theoretical perspectives in the illustrative cases of UTe2, CeRh2As2, and CeCu2Si2, where applied magnetic fields or pressure induce a variety of superconducting phases. We close by providing a brief overview of overarching issues and implications for possible future directions.
重费米子金属中的多重超导相
超过全局U(1)相的对称性破缺是非常规超导体的关键特征。作为典型的强相关材料,重费米子金属为实现非常规超导提供了理想的平台。本文综述了重费米子的超导性,重点介绍了具有多个超导相的材料。在这种情况下,我们强调了轨道选择(矩阵)配对函数的作用,它被定义为有效轨道自由度空间(如电子轨道和子晶格)中的矩阵,以及在带基中根据带内和带间配对分量的等效描述。量子临界和相关的奇异金属物理在非常规超导发展中的作用贯穿全文。我们详细讨论了UTe2, CeRh2As2和CeCu2Si2在外加磁场或压力诱导各种超导相的情况下的最新实验观察和理论观点。最后,我们简要概述了总体问题和对未来可能方向的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信