A voting scheme to improve the secondary structure prediction

J. Taheri, Albert Y. Zomaya
{"title":"A voting scheme to improve the secondary structure prediction","authors":"J. Taheri, Albert Y. Zomaya","doi":"10.1109/AICCSA.2010.5586931","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach, namely SSVS, to improve the secondary structure prediction of proteins. In this work, a Radial Basis Function Neural Network is trained to combine different answers found by different secondary structure prediction techniques to produce superior answers. SSVS is tested with three of the well-known benchmarks in this field. The results demonstrate the superiority of the proposed technique even in the case of formidable sequences.","PeriodicalId":352946,"journal":{"name":"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS/IEEE International Conference on Computer Systems and Applications - AICCSA 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2010.5586931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a novel approach, namely SSVS, to improve the secondary structure prediction of proteins. In this work, a Radial Basis Function Neural Network is trained to combine different answers found by different secondary structure prediction techniques to produce superior answers. SSVS is tested with three of the well-known benchmarks in this field. The results demonstrate the superiority of the proposed technique even in the case of formidable sequences.
一种改进二次结构预测的投票方案
本文提出了一种改进蛋白质二级结构预测的新方法,即SSVS。在这项工作中,我们训练了一个径向基函数神经网络,将不同二级结构预测技术发现的不同答案结合起来,产生更优的答案。SSVS通过了该领域三个著名的基准测试。结果表明,即使在复杂序列的情况下,所提出的技术也具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信