Clustering of spectral images using Echo state networks

P. Koprinkova-Hristova, D. Angelova, D. Borisova, G. Jelev
{"title":"Clustering of spectral images using Echo state networks","authors":"P. Koprinkova-Hristova, D. Angelova, D. Borisova, G. Jelev","doi":"10.1109/INISTA.2013.6577633","DOIUrl":null,"url":null,"abstract":"In the present work we applied a recently developed procedure for multidimensional data clustering to processing of spectral satellite images. The core of our approach lays in projection of multidimensional image to a two dimensional one. The main aim is to discover points with similar characteristics. This was done by clustering of the resulting image. The processing technique exploits equilibrium states of a kind of recurrent neural network - Echo state network (ESN) - that are obtained after intrinsic plasticity (IP) tuning of the ESN using multidimensional data as inputs. The proposed in our previous work automated procedure for multidimensional data clustering is further refined and tested on the satellite image data. The obtained number and position of clusters of a multi-spectral image of a mountain region in Bulgaria is compared with the classification of the region landscape given by the Ministry of Regional Development and Public Works.","PeriodicalId":301458,"journal":{"name":"2013 IEEE INISTA","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE INISTA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2013.6577633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In the present work we applied a recently developed procedure for multidimensional data clustering to processing of spectral satellite images. The core of our approach lays in projection of multidimensional image to a two dimensional one. The main aim is to discover points with similar characteristics. This was done by clustering of the resulting image. The processing technique exploits equilibrium states of a kind of recurrent neural network - Echo state network (ESN) - that are obtained after intrinsic plasticity (IP) tuning of the ESN using multidimensional data as inputs. The proposed in our previous work automated procedure for multidimensional data clustering is further refined and tested on the satellite image data. The obtained number and position of clusters of a multi-spectral image of a mountain region in Bulgaria is compared with the classification of the region landscape given by the Ministry of Regional Development and Public Works.
基于回声状态网络的光谱图像聚类
在目前的工作中,我们应用了最近开发的多维数据聚类程序来处理光谱卫星图像。该方法的核心是将多维图像投影到二维图像。主要目的是发现具有相似特征的点。这是通过对结果图像进行聚类来完成的。该处理技术利用了一种递归神经网络回声状态网络(ESN)的平衡状态,回声状态网络是利用多维数据作为输入对回声状态网络进行内在可塑性(IP)调谐后获得的。本文进一步完善了前人提出的多维数据自动聚类方法,并在卫星图像数据上进行了测试。将保加利亚山区的多光谱图像的集群数量和位置与区域发展和公共工程部给出的区域景观分类进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信