{"title":"Deep Learning-Based Classification of Malignant and Benign Cells in Dermatoscopic Images via Transfer Learning Approach","authors":"V. Kumar, V. Mishra, Monika Arora","doi":"10.1142/s0219467822500413","DOIUrl":null,"url":null,"abstract":"The inhibition of healthy cells creating improper controlling process of the human body system indicates the occurrence of growth of cancerous cells. The cluster of such cells leads to the development of tumor. The observation of this type of abnormal skin pigmentation is done using an effective tool called Dermoscopy. However, these dermatoscopic images possess a great challenge for diagnosis. Considering the characteristics of dermatoscopic images, transfer learning is an appropriate approach of automatically classifying the images based on the respective categories. An automatic identification of skin cancer not only saves human life but also helps in detecting its growth at an earlier stage which saves medical practitioner’s effort and time. A newly predicted model has been proposed for classifying the skin cancer as benign or malignant by DCNN with transfer learning and its pre-trained models such as VGG 16, VGG 19, ResNet 50, ResNet 101, and Inception V3. The proposed methodology aims at examining the efficiency of pre-trained models and transfer learning approach for the classification tasks and opens new dimensions of research in the field of medicines using imaging technique which can be implementable in real-time applications.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467822500413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The inhibition of healthy cells creating improper controlling process of the human body system indicates the occurrence of growth of cancerous cells. The cluster of such cells leads to the development of tumor. The observation of this type of abnormal skin pigmentation is done using an effective tool called Dermoscopy. However, these dermatoscopic images possess a great challenge for diagnosis. Considering the characteristics of dermatoscopic images, transfer learning is an appropriate approach of automatically classifying the images based on the respective categories. An automatic identification of skin cancer not only saves human life but also helps in detecting its growth at an earlier stage which saves medical practitioner’s effort and time. A newly predicted model has been proposed for classifying the skin cancer as benign or malignant by DCNN with transfer learning and its pre-trained models such as VGG 16, VGG 19, ResNet 50, ResNet 101, and Inception V3. The proposed methodology aims at examining the efficiency of pre-trained models and transfer learning approach for the classification tasks and opens new dimensions of research in the field of medicines using imaging technique which can be implementable in real-time applications.