An Automatic Partitioning of Gutenberg.org Texts

Davide Picca, Cyrille Gay-Crosier
{"title":"An Automatic Partitioning of Gutenberg.org Texts","authors":"Davide Picca, Cyrille Gay-Crosier","doi":"10.4230/OASIcs.LDK.2021.35","DOIUrl":null,"url":null,"abstract":"Over the last 10 years, the automatic partitioning of texts has raised the interest of the community. The automatic identification of parts of texts can provide a faster and easier access to textual analysis. We introduce here an exploratory work for multi-part book identification. In an early attempt, we focus on Gutenberg.org which is one of the projects that has received the largest public support in recent years. The purpose of this article is to present a preliminary system that automatically classifies parts of texts into 35 semantic categories. An accuracy of more than 93% on the test set was achieved. We are planning to extend this effort to other repositories in the future. 2012 ACM Subject Classification Computing methodologies; Computing methodologies → Language resources","PeriodicalId":377119,"journal":{"name":"International Conference on Language, Data, and Knowledge","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Language, Data, and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.LDK.2021.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Over the last 10 years, the automatic partitioning of texts has raised the interest of the community. The automatic identification of parts of texts can provide a faster and easier access to textual analysis. We introduce here an exploratory work for multi-part book identification. In an early attempt, we focus on Gutenberg.org which is one of the projects that has received the largest public support in recent years. The purpose of this article is to present a preliminary system that automatically classifies parts of texts into 35 semantic categories. An accuracy of more than 93% on the test set was achieved. We are planning to extend this effort to other repositories in the future. 2012 ACM Subject Classification Computing methodologies; Computing methodologies → Language resources
古腾堡网站文本的自动分割
在过去的10年里,文本的自动划分引起了社区的兴趣。文本部分的自动识别可以为文本分析提供更快、更容易的访问。本文介绍了一项多部分图书鉴定的探索性工作。在早期的尝试中,我们专注于Gutenberg.org,这是近年来获得最大公众支持的项目之一。本文的目的是提出一个初步的系统,自动将部分文本分为35个语义类别。在测试集上实现了93%以上的准确率。我们计划将来将这项工作扩展到其他存储库。2012 ACM主题分类计算方法;计算方法→语言资源
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信