Artificial neural network for forecasting daily loads of a Canadian electric utility

B. Kermanshahi, C.H. Poskar, G. Swift, P. McLaren, W. Pedrycz, W. Buhr, A. Silk
{"title":"Artificial neural network for forecasting daily loads of a Canadian electric utility","authors":"B. Kermanshahi, C.H. Poskar, G. Swift, P. McLaren, W. Pedrycz, W. Buhr, A. Silk","doi":"10.1109/ANN.1993.264330","DOIUrl":null,"url":null,"abstract":"This paper describes the application of an artificial neural network to short term load forecasting. One of the most popular artificial neural network models, the 3-layer backpropagation model, is used to learn the relationship between 86 inputs, which are believed to have significant effects on the loads, and 24 outputs: one for each hourly load of the day. Historical data collected over a period of 2 years (e.g. calendar years 1989 and 1990) is used to train the proposed ANN network. The results of the proposed ANN networks have been compared to those of the present system (multiple linear regression) and show an improved forecast capability.<<ETX>>","PeriodicalId":121897,"journal":{"name":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1993.264330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

This paper describes the application of an artificial neural network to short term load forecasting. One of the most popular artificial neural network models, the 3-layer backpropagation model, is used to learn the relationship between 86 inputs, which are believed to have significant effects on the loads, and 24 outputs: one for each hourly load of the day. Historical data collected over a period of 2 years (e.g. calendar years 1989 and 1990) is used to train the proposed ANN network. The results of the proposed ANN networks have been compared to those of the present system (multiple linear regression) and show an improved forecast capability.<>
预测加拿大电力公司日负荷的人工神经网络
本文介绍了人工神经网络在短期负荷预测中的应用。最流行的人工神经网络模型之一,3层反向传播模型,被用来学习86个输入之间的关系,这些输入被认为对负载有显著影响,24个输出:一天中每个小时的负载一个。收集了2年的历史数据(例如1989年和1990年)用于训练所提出的人工神经网络。将所提出的人工神经网络的结果与现有系统(多元线性回归)的结果进行了比较,显示出改进的预测能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信