Optimizing Gait Parameters and Insole Sensor Positioning for Parkinson's Disease Assessment

Jiaxin Ma, K. Kameyama, M. Nakagawa
{"title":"Optimizing Gait Parameters and Insole Sensor Positioning for Parkinson's Disease Assessment","authors":"Jiaxin Ma, K. Kameyama, M. Nakagawa","doi":"10.1145/3168776.3168780","DOIUrl":null,"url":null,"abstract":"Gait abnormality is a characteristic symptom of Parkinson's disease (PD) and could be exploited to assess PD progression. In this study, we examined various gait parameters and insole sensor positioning for evaluating PD. We first verified the results from several published papers in which gait parameters exhibited significant differences between PD patients and healthy controls. Then, we investigated additional gait parameters derived from individual sensors in 8 positions across the sole. The result demonstrated that the balls, heels, and center of arches are valuable positions for PD gait assessment. Furthermore, a random forests method showed the most important gait parameters to predict PD include swing time on the balls and medial arches, double support time on the balls and medial arches, and ground reaction forces on the heels. The optimization of sensor positioning and gait parameters suggests a low-cost and effective way identify Parkinsonian gait characteristics.","PeriodicalId":253305,"journal":{"name":"Proceedings of the 2017 4th International Conference on Biomedical and Bioinformatics Engineering","volume":"300 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 4th International Conference on Biomedical and Bioinformatics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3168776.3168780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Gait abnormality is a characteristic symptom of Parkinson's disease (PD) and could be exploited to assess PD progression. In this study, we examined various gait parameters and insole sensor positioning for evaluating PD. We first verified the results from several published papers in which gait parameters exhibited significant differences between PD patients and healthy controls. Then, we investigated additional gait parameters derived from individual sensors in 8 positions across the sole. The result demonstrated that the balls, heels, and center of arches are valuable positions for PD gait assessment. Furthermore, a random forests method showed the most important gait parameters to predict PD include swing time on the balls and medial arches, double support time on the balls and medial arches, and ground reaction forces on the heels. The optimization of sensor positioning and gait parameters suggests a low-cost and effective way identify Parkinsonian gait characteristics.
帕金森病评估的步态参数优化和鞋垫传感器定位
步态异常是帕金森病(PD)的特征症状,可以用来评估PD的进展。在这项研究中,我们检查了各种步态参数和鞋垫传感器定位来评估PD。我们首先验证了几篇发表的论文的结果,其中步态参数在PD患者和健康对照组之间表现出显著差异。然后,我们研究了来自鞋底8个位置的单个传感器的额外步态参数。结果表明,球、足跟和足弓中心是PD步态评估的重要位置。此外,随机森林方法显示,预测PD最重要的步态参数包括球和内侧弓的摆动时间、球和内侧弓的双支撑时间以及脚跟的地面反作用力。通过对传感器定位和步态参数的优化,提出了一种低成本、有效的帕金森步态特征识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信