P. Kutas, Mickaël Montessinos, Gergely Zábrádi, T'imea Csah'ok
{"title":"Finding Nontrivial Zeros of Quadratic Forms over Rational Function Fields of Characteristic 2","authors":"P. Kutas, Mickaël Montessinos, Gergely Zábrádi, T'imea Csah'ok","doi":"10.1145/3476446.3535485","DOIUrl":null,"url":null,"abstract":"We propose polynomial-time algorithms for finding nontrivial zeros of quadratic forms with four variables over rational function fields of characteristic 2. We apply these results to find prescribed quadratic subfields of quaternion division algebras and zero divisors in $M_2(D)$, the full matrix algebra over a division algebra, given by structure constants. We also provide an implementation of our results in MAGMA which shows that the algorithms are truly practical.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We propose polynomial-time algorithms for finding nontrivial zeros of quadratic forms with four variables over rational function fields of characteristic 2. We apply these results to find prescribed quadratic subfields of quaternion division algebras and zero divisors in $M_2(D)$, the full matrix algebra over a division algebra, given by structure constants. We also provide an implementation of our results in MAGMA which shows that the algorithms are truly practical.