Optimal Thresholding for Direction of Arrival Estimation using Compressive Sensing

Koredianto Usman, H. Gunawan, A. B. Suksmono
{"title":"Optimal Thresholding for Direction of Arrival Estimation using Compressive Sensing","authors":"Koredianto Usman, H. Gunawan, A. B. Suksmono","doi":"10.1109/ICCEREC.2018.8712094","DOIUrl":null,"url":null,"abstract":"Recently, there are a lot of study of direction of arrival (DoA) estimation using compressive sensing (CS). As CS is a new paradigm in signal processing, there are many aspects of this method that can be investigated. In the case of DoA estimation in noisy measurement, it is important to correctly determine a correct threshold of CS reconstruction, particularly when CS reconstruction is implemented using L1-norm minimization. Too small threshold value will make the correct DoA does not lies in CS reconstruction searching area, while too large threshold value will burden CS iteration to select a solution from a large number of possible solutions. In this paper, we derived an optimal threshold value for CS reconstruction for DoA estimation mathematically and verified the result using computer simulation. Using Gaussian noise model, we obtain the chi-square distribution of euclidean distance of noisy and noiseless received vector. We introduce the thresholding index κ to scale the standard deviation of chi-square distribution to determine the CS reconstruction threshold and simulate this value for various SNR. We find that the optimal κ value 0.5 to 1 for high noise environment, and optimal κ value 1 to 2 in low noise environment.","PeriodicalId":250054,"journal":{"name":"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEREC.2018.8712094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, there are a lot of study of direction of arrival (DoA) estimation using compressive sensing (CS). As CS is a new paradigm in signal processing, there are many aspects of this method that can be investigated. In the case of DoA estimation in noisy measurement, it is important to correctly determine a correct threshold of CS reconstruction, particularly when CS reconstruction is implemented using L1-norm minimization. Too small threshold value will make the correct DoA does not lies in CS reconstruction searching area, while too large threshold value will burden CS iteration to select a solution from a large number of possible solutions. In this paper, we derived an optimal threshold value for CS reconstruction for DoA estimation mathematically and verified the result using computer simulation. Using Gaussian noise model, we obtain the chi-square distribution of euclidean distance of noisy and noiseless received vector. We introduce the thresholding index κ to scale the standard deviation of chi-square distribution to determine the CS reconstruction threshold and simulate this value for various SNR. We find that the optimal κ value 0.5 to 1 for high noise environment, and optimal κ value 1 to 2 in low noise environment.
基于压缩感知的到达方向估计的最优阈值
近年来,基于压缩感知(CS)的到达方向(DoA)估计得到了很多研究。由于CS是信号处理的一种新范式,因此该方法的许多方面都可以进行研究。在噪声测量中的DoA估计中,正确确定CS重建的正确阈值非常重要,特别是当使用l1范数最小化实现CS重建时。阈值过小会使正确的DoA不位于CS重构搜索区域内,而阈值过大则会给CS迭代带来负担,使其从大量可能解中选择一个解。本文从数学上推导了CS重构的最佳阈值,并通过计算机仿真对结果进行了验证。利用高斯噪声模型,得到了有噪声和无噪声接收矢量的欧氏距离的卡方分布。我们引入阈值指数κ来缩放卡方分布的标准差,以确定CS重建阈值,并对不同信噪比的CS重建阈值进行模拟。我们发现高噪声环境下的最佳κ值为0.5 ~ 1,低噪声环境下的最佳κ值为1 ~ 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信