Explainable AI for Car Crash Detection using Multivariate Time Series

L. Tronchin, R. Sicilia, E. Cordelli, L. R. Celsi, D. Maccagnola, Massimo Natale, P. Soda
{"title":"Explainable AI for Car Crash Detection using Multivariate Time Series","authors":"L. Tronchin, R. Sicilia, E. Cordelli, L. R. Celsi, D. Maccagnola, Massimo Natale, P. Soda","doi":"10.1109/ICCICC53683.2021.9811335","DOIUrl":null,"url":null,"abstract":"The pervasiveness of Artificial Intelligence approaches in effectively supporting the decision process in many applications has raised the need to explain their behaviour. In this context, we present the application and evaluation of three eXplainable Artificial Intelligence methods in a real-world multimodal task of anomaly detection on telematics data. We cope with the challenge of explaining Multivariate Time Series and of translating methods designed for images to this domain.","PeriodicalId":101653,"journal":{"name":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC53683.2021.9811335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The pervasiveness of Artificial Intelligence approaches in effectively supporting the decision process in many applications has raised the need to explain their behaviour. In this context, we present the application and evaluation of three eXplainable Artificial Intelligence methods in a real-world multimodal task of anomaly detection on telematics data. We cope with the challenge of explaining Multivariate Time Series and of translating methods designed for images to this domain.
基于多元时间序列的可解释AI汽车碰撞检测
人工智能方法在许多应用程序中有效地支持决策过程的普及,提出了解释其行为的需要。在此背景下,我们提出了三种可解释的人工智能方法在远程信息处理数据异常检测的实际多模态任务中的应用和评估。我们应对解释多元时间序列的挑战,并将为图像设计的方法翻译到这个领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信