Constructing social networks from semi-structured chat-log data

Sude Tavassoli, M. Moessner, K. Zweig
{"title":"Constructing social networks from semi-structured chat-log data","authors":"Sude Tavassoli, M. Moessner, K. Zweig","doi":"10.1109/ASONAM.2014.6921575","DOIUrl":null,"url":null,"abstract":"Chat-log data is a little used resource for analyzing human communication in social networks. Some statements in this data do not include the intended username of a receiver or any variant of it, and thus are termed “misaddressed statements”. Constructing social networks from such a semi-structured data and subsequent analyzing require a reliable process to make sure that the social network representation is as truthful as possible. Due to the large size of data, human assignment of statements to receivers is prohibitive. In this paper, we present and evaluate different methods to reliably predict a receiver for these misaddressed statements. We use a set of prediction rules which follow human communication behavior in a group chat and we show their success in constructing social networks.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Chat-log data is a little used resource for analyzing human communication in social networks. Some statements in this data do not include the intended username of a receiver or any variant of it, and thus are termed “misaddressed statements”. Constructing social networks from such a semi-structured data and subsequent analyzing require a reliable process to make sure that the social network representation is as truthful as possible. Due to the large size of data, human assignment of statements to receivers is prohibitive. In this paper, we present and evaluate different methods to reliably predict a receiver for these misaddressed statements. We use a set of prediction rules which follow human communication behavior in a group chat and we show their success in constructing social networks.
从半结构化的聊天日志数据构建社交网络
聊天日志数据是分析社交网络中人类交流的一种很少使用的资源。此数据中的某些声明不包括收件人的预期用户名或其任何变体,因此被称为“错误地址声明”。从这种半结构化的数据中构建社会网络并进行后续分析,需要一个可靠的过程来确保社会网络的表示尽可能真实。由于数据量大,人为地将语句赋值给接收者是令人望而却步的。在本文中,我们提出并评估了不同的方法来可靠地预测这些错误陈述的接收者。我们使用了一组预测规则,这些规则遵循了群组聊天中的人类交流行为,并展示了它们在构建社交网络方面的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信