Link Budget Analysis for the Modeling of GNSS-R Sea Surface Returns in Far-from-Specular Acquisition Geometries

G. Di Martino, A. Di Simone, G. Franceschetti, A. Iodice, D. Riccio, G. Ruello
{"title":"Link Budget Analysis for the Modeling of GNSS-R Sea Surface Returns in Far-from-Specular Acquisition Geometries","authors":"G. Di Martino, A. Di Simone, G. Franceschetti, A. Iodice, D. Riccio, G. Ruello","doi":"10.23919/URSIGASS51995.2021.9560646","DOIUrl":null,"url":null,"abstract":"For the analysis of sea surface using Global Navigation Satellite System-Reflectometry (GNSS-R), Geometrical Optics (GO) is typically adopted for modeling scattering around the specular reflection direction, where conventional GNSS-R receivers operate. However, the exploitation of GNSS-R for maritime surveillance applications, e.g., ship detection, is feasible in far-from-specular acquisition geometries, where the validity of GO is questionable. In this paper, we present the results of a link budget analysis for the sea surface return in arbitrary viewing geometries. The study is aimed at comparing GO with a more accurate closed-form bistatic two-scale model, named BA-PTSM, for the simulation of GNSS-R signals in acquisition geometries other than the conventional forward-scattering one. Numerical results show that a reliable simulation of airborne GNSS-R signals in far-from-specular acquisition geometries requires sea surface scattering models more accurate than GO, e.g., BA-PTSM.","PeriodicalId":152047,"journal":{"name":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS51995.2021.9560646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

For the analysis of sea surface using Global Navigation Satellite System-Reflectometry (GNSS-R), Geometrical Optics (GO) is typically adopted for modeling scattering around the specular reflection direction, where conventional GNSS-R receivers operate. However, the exploitation of GNSS-R for maritime surveillance applications, e.g., ship detection, is feasible in far-from-specular acquisition geometries, where the validity of GO is questionable. In this paper, we present the results of a link budget analysis for the sea surface return in arbitrary viewing geometries. The study is aimed at comparing GO with a more accurate closed-form bistatic two-scale model, named BA-PTSM, for the simulation of GNSS-R signals in acquisition geometries other than the conventional forward-scattering one. Numerical results show that a reliable simulation of airborne GNSS-R signals in far-from-specular acquisition geometries requires sea surface scattering models more accurate than GO, e.g., BA-PTSM.
GNSS-R海面远镜面捕获几何模型的链路预算分析
对于全球导航卫星系统反射(GNSS-R)海面分析,通常采用几何光学(GO)对镜面反射方向周围的散射进行建模,这是传统GNSS-R接收机工作的方向。然而,利用GNSS-R进行海上监视应用,例如船舶探测,在非镜面采集几何形状中是可行的,其中GO的有效性值得怀疑。在本文中,我们给出了在任意观测几何形状下海面回波的链路预算分析结果。该研究旨在将GO与一种更精确的闭式双基地双尺度模型BA-PTSM进行比较,该模型用于模拟GNSS-R信号的捕获几何形状,而不是传统的前向散射模型。数值结果表明,要可靠地模拟机载GNSS-R信号的远镜面采集几何形状,需要比GO更精确的海面散射模型,例如ba - ppm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信