Hand-dorsa Vein Recognition based on Deep Learning

Kefeng Li, Guangyuan Zhang, Peng Wang
{"title":"Hand-dorsa Vein Recognition based on Deep Learning","authors":"Kefeng Li, Guangyuan Zhang, Peng Wang","doi":"10.1109/SPAC46244.2018.8965546","DOIUrl":null,"url":null,"abstract":"In last several years, deep learning methods have improved the performances of classification and recognition problems, especially for images. This paper investigates popular Convolutional Neural Networks (CNNs) on hand-dorsa vein recognition. To improve the performance of CNNs, a database enlargement method based on PCA reconstruction is proposed. To discuss the influence of dataset size, the enlarged dataset is sampled to form different datasets with the samples for each class are 50, 150 and 250 separately. Our method is run on the NCUT database and the enlarged database. Our method reaches the recognition rate of 99.61% when dataset size is 250 outperforming most other methods, meaning that the PCA reconstruction method is effective to improve the performance of CNNs.","PeriodicalId":360369,"journal":{"name":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC46244.2018.8965546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In last several years, deep learning methods have improved the performances of classification and recognition problems, especially for images. This paper investigates popular Convolutional Neural Networks (CNNs) on hand-dorsa vein recognition. To improve the performance of CNNs, a database enlargement method based on PCA reconstruction is proposed. To discuss the influence of dataset size, the enlarged dataset is sampled to form different datasets with the samples for each class are 50, 150 and 250 separately. Our method is run on the NCUT database and the enlarged database. Our method reaches the recognition rate of 99.61% when dataset size is 250 outperforming most other methods, meaning that the PCA reconstruction method is effective to improve the performance of CNNs.
基于深度学习的手背静脉识别
在过去的几年里,深度学习方法提高了分类和识别问题的性能,特别是对图像的分类和识别。本文研究了卷积神经网络(cnn)在手背静脉识别中的应用。为了提高cnn的性能,提出了一种基于主成分重构的数据库扩展方法。为了讨论数据集大小的影响,对放大后的数据集进行采样,形成不同的数据集,每个类的样本分别为50、150和250个。我们的方法在NCUT数据库和扩大后的数据库上运行。当数据集大小为250时,我们的方法的识别率达到99.61%,优于大多数其他方法,这意味着PCA重建方法可以有效地提高cnn的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信