Hilbert schemes and y–ification of Khovanov–Rozansky homology

E. Gorsky, Matthew Hogancamp
{"title":"Hilbert schemes and y–ification of\nKhovanov–Rozansky homology","authors":"E. Gorsky, Matthew Hogancamp","doi":"10.2140/gt.2022.26.587","DOIUrl":null,"url":null,"abstract":"Author(s): Gorsky, Eugene; Hogancamp, Matthew | Abstract: We define a deformation of the triply graded Khovanov-Rozansky homology of a link $L$ depending on a choice of parameters $y_c$ for each component of $L$, which satisfies link-splitting properties similar to the Batson-Seed invariant. Keeping the $y_c$ as formal variables yields a link homology valued in triply graded modules over $\\mathbb{Q}[x_c,y_c]_{c\\in \\pi_0(L)}$. We conjecture that this invariant restores the missing $Q\\leftrightarrow TQ^{-1}$ symmetry of the triply graded Khovanov-Rozansky homology, and in addition satisfies a number of predictions coming from a conjectural connection with Hilbert schemes of points in the plane. We compute this invariant for all positive powers of the full twist and match it to the family of ideals appearing in Haiman's description of the isospectral Hilbert scheme.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Author(s): Gorsky, Eugene; Hogancamp, Matthew | Abstract: We define a deformation of the triply graded Khovanov-Rozansky homology of a link $L$ depending on a choice of parameters $y_c$ for each component of $L$, which satisfies link-splitting properties similar to the Batson-Seed invariant. Keeping the $y_c$ as formal variables yields a link homology valued in triply graded modules over $\mathbb{Q}[x_c,y_c]_{c\in \pi_0(L)}$. We conjecture that this invariant restores the missing $Q\leftrightarrow TQ^{-1}$ symmetry of the triply graded Khovanov-Rozansky homology, and in addition satisfies a number of predictions coming from a conjectural connection with Hilbert schemes of points in the plane. We compute this invariant for all positive powers of the full twist and match it to the family of ideals appearing in Haiman's description of the isospectral Hilbert scheme.
Hilbert格式与khovanov - rozansky同调的y化
作者:戈尔斯基,尤金;摘要:我们定义了一个连杆$L$的三阶Khovanov-Rozansky同调的变形,该变形依赖于$L$的每个分量的参数$y_c$的选择,它满足类似于Batson-Seed不变量的链路分裂性质。保持$y_c$作为形式变量,在$\mathbb{Q}[x_c,y_c]_{c\in \pi_0(L)}$上的三重分级模块中产生链接同调值。我们推测这个不变量恢复了三阶Khovanov-Rozansky同调中缺失的$Q\leftrightarrow TQ^{-1}$对称性,并且还满足了一些来自与平面上点的Hilbert格式的猜想联系的预测。我们计算了全扭转的所有正幂的不变量,并将其与海曼描述的等谱希尔伯特格式中的理想族相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信