Answering Complex Questions by Combining Information from Curated and Extracted Knowledge Bases

Nikita Bhutani, Xinyi Zheng, Xinyi Zheng, Kun Qian, Yunyao Li, H. Jagadish
{"title":"Answering Complex Questions by Combining Information from Curated and Extracted Knowledge Bases","authors":"Nikita Bhutani, Xinyi Zheng, Xinyi Zheng, Kun Qian, Yunyao Li, H. Jagadish","doi":"10.18653/v1/2020.nli-1.1","DOIUrl":null,"url":null,"abstract":"Knowledge-based question answering (KB_QA) has long focused on simple questions that can be answered from a single knowledge source, a manually curated or an automatically extracted KB. In this work, we look at answering complex questions which often require combining information from multiple sources. We present a novel KB-QA system, Multique, which can map a complex question to a complex query pattern using a sequence of simple queries each targeted at a specific KB. It finds simple queries using a neural-network based model capable of collective inference over textual relations in extracted KB and ontological relations in curated KB. Experiments show that our proposed system outperforms previous KB-QA systems on benchmark datasets, ComplexWebQuestions and WebQuestionsSP.","PeriodicalId":427040,"journal":{"name":"Proceedings of the First Workshop on Natural Language Interfaces","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Natural Language Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.nli-1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Knowledge-based question answering (KB_QA) has long focused on simple questions that can be answered from a single knowledge source, a manually curated or an automatically extracted KB. In this work, we look at answering complex questions which often require combining information from multiple sources. We present a novel KB-QA system, Multique, which can map a complex question to a complex query pattern using a sequence of simple queries each targeted at a specific KB. It finds simple queries using a neural-network based model capable of collective inference over textual relations in extracted KB and ontological relations in curated KB. Experiments show that our proposed system outperforms previous KB-QA systems on benchmark datasets, ComplexWebQuestions and WebQuestionsSP.
通过结合来自策划和提取知识库的信息来回答复杂的问题
基于知识的问答(KB_QA)长期以来一直专注于可以从单个知识来源、人工策划或自动提取的知识库中回答的简单问题。在这项工作中,我们着眼于回答复杂的问题,这些问题通常需要结合来自多个来源的信息。我们提出了一个新的KB- qa系统,Multique,它可以使用一系列针对特定KB的简单查询将复杂问题映射到复杂查询模式。它使用基于神经网络的模型来查找简单的查询,该模型能够对抽取的知识库中的文本关系和编排的知识库中的本体关系进行集体推理。实验表明,我们提出的系统在基准数据集ComplexWebQuestions和WebQuestionsSP上优于以前的KB-QA系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信