Calibrated Rotation-Helicity-Quadratic Constitutive Relation Spalart-Allmaras (R-H-QCR SA) Model for the Prediction of Multi-Stage Compressor Characteristics

Kotaro Matsui, N. Tani, E. Perez, Ryan Kelly, A. Jemcov
{"title":"Calibrated Rotation-Helicity-Quadratic Constitutive Relation Spalart-Allmaras (R-H-QCR SA) Model for the Prediction of Multi-Stage Compressor Characteristics","authors":"Kotaro Matsui, N. Tani, E. Perez, Ryan Kelly, A. Jemcov","doi":"10.1115/gt2022-82080","DOIUrl":null,"url":null,"abstract":"\n Compressor performance prediction is still one of the significant interests in the turbomachinery research field. The two critical parameters for compressor design are adiabatic efficiency and stability margin. The Spalart-Allmaras (SA) turbulence model and modified SA models are widely used in that design process. However, the prediction accuracy is not always satisfactory. In most cases, the SA model predicts larger stall mass flow, and the RC-QCR SA model underestimates efficiency. This study proposes a new combination of the modified SA model (R-H-QCR model). R-H-QCR stands for Rotation-Helicity-Quadratic constitutive relation. The model increases or decreases turbulent viscosity based on flow rotation, energy backscatter, and anisotropy of turbulence flow field. The Bayesian inference framework calibrates the model parameters to predict accurately both efficiency and stability in the 3.5 stage compressor. The R-H-QCR, RC-QCR, and default SA models are evaluated in the multi-stage compressor. For the performance prediction, the R-H-QCR model predicts a better stability margin than the SA model and better efficiency than the RC-QCR model. In addition, the spanwise distribution of normalized total pressure is well captured by the R-H-QCR model, indicating that the R-H-QCR model improves flow field prediction.","PeriodicalId":191970,"journal":{"name":"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10C: Turbomachinery — Design Methods and CFD Modeling for Turbomachinery; Ducts, Noise, and Component Interactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-82080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Compressor performance prediction is still one of the significant interests in the turbomachinery research field. The two critical parameters for compressor design are adiabatic efficiency and stability margin. The Spalart-Allmaras (SA) turbulence model and modified SA models are widely used in that design process. However, the prediction accuracy is not always satisfactory. In most cases, the SA model predicts larger stall mass flow, and the RC-QCR SA model underestimates efficiency. This study proposes a new combination of the modified SA model (R-H-QCR model). R-H-QCR stands for Rotation-Helicity-Quadratic constitutive relation. The model increases or decreases turbulent viscosity based on flow rotation, energy backscatter, and anisotropy of turbulence flow field. The Bayesian inference framework calibrates the model parameters to predict accurately both efficiency and stability in the 3.5 stage compressor. The R-H-QCR, RC-QCR, and default SA models are evaluated in the multi-stage compressor. For the performance prediction, the R-H-QCR model predicts a better stability margin than the SA model and better efficiency than the RC-QCR model. In addition, the spanwise distribution of normalized total pressure is well captured by the R-H-QCR model, indicating that the R-H-QCR model improves flow field prediction.
用于多级压气机特性预测的校正旋转-螺旋-二次本构关系Spalart-Allmaras (R-H-QCR SA)模型
压缩机性能预测一直是叶轮机械研究领域的热点之一。压缩机设计的两个关键参数是绝热效率和稳定裕度。Spalart-Allmaras (SA)湍流模型和改进的SA模型被广泛应用于该设计过程。然而,预测精度并不总是令人满意的。在大多数情况下,SA模型预测较大的失速质量流量,而RC-QCR SA模型低估了效率。本研究提出了一种新的组合改进SA模型(R-H-QCR模型)。R-H-QCR为旋转-螺旋-二次本构关系。该模型根据流动旋转、能量后向散射和湍流流场的各向异性来增加或减少湍流粘度。贝叶斯推理框架对模型参数进行校正,准确预测3.5级压缩机的效率和稳定性。在多级压缩机中评估R-H-QCR、RC-QCR和默认SA模型。在性能预测方面,R-H-QCR模型的稳定性裕度优于SA模型,效率优于RC-QCR模型。此外,R-H-QCR模型较好地捕捉了归一化总压的展向分布,表明R-H-QCR模型改善了流场预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信