Bag-of-visual-words vs global image descriptors on two-stage multimodal retrieval

S. Chatzichristofis, Konstantinos Zagoris, A. Arampatzis
{"title":"Bag-of-visual-words vs global image descriptors on two-stage multimodal retrieval","authors":"S. Chatzichristofis, Konstantinos Zagoris, A. Arampatzis","doi":"10.1145/2009916.2010144","DOIUrl":null,"url":null,"abstract":"The Bag-Of-Visual-Words (BOVW) paradigm is fast becoming a popular image representation for Content-Based Image Retrieval (CBIR), mainly because of its better retrieval effectiveness over global feature representations on collections with images being near-duplicate to queries. In this experimental study we demonstrate that this advantage of BOVW is diminished when visual diversity is enhanced by using a secondary modality, such as text, to pre-filter images. The TOP-SURF descriptor is evaluated against Compact Composite Descriptors on a two-stage image retrieval setup, which first uses a text modality to rank the collection and then perform CBIR only on the top-K items.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The Bag-Of-Visual-Words (BOVW) paradigm is fast becoming a popular image representation for Content-Based Image Retrieval (CBIR), mainly because of its better retrieval effectiveness over global feature representations on collections with images being near-duplicate to queries. In this experimental study we demonstrate that this advantage of BOVW is diminished when visual diversity is enhanced by using a secondary modality, such as text, to pre-filter images. The TOP-SURF descriptor is evaluated against Compact Composite Descriptors on a two-stage image retrieval setup, which first uses a text modality to rank the collection and then perform CBIR only on the top-K items.
两阶段多模态检索的视觉词袋与全局图像描述符
视觉词袋(BOVW)范式正迅速成为基于内容的图像检索(CBIR)的一种流行的图像表示,主要是因为它在图像与查询几乎重复的集合上比全局特征表示具有更好的检索效率。在本实验研究中,我们证明,当使用第二模态(如文本)来预过滤图像以增强视觉多样性时,BOVW的这种优势就会减弱。TOP-SURF描述符在两阶段图像检索设置上根据Compact Composite Descriptors进行评估,该设置首先使用文本模式对集合进行排序,然后仅对top-K项执行CBIR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信