Multi-scale relevance vector machine classification based on intelligent optimization

G. Fan, Dengwu Ma, Xiaoyan Qu, Xiaofeng Lv
{"title":"Multi-scale relevance vector machine classification based on intelligent optimization","authors":"G. Fan, Dengwu Ma, Xiaoyan Qu, Xiaofeng Lv","doi":"10.1109/ICSAI.2012.6223540","DOIUrl":null,"url":null,"abstract":"An appropriate selection of kernel function and its parameters is very important for the relevance vector machine (RVM) to achieve a good performance. To overcome the limitation of RVM with single kernel, a multi-scale RVM classification method based on intelligent optimization is proposed. Multiple Gaussian kernels are combined by linear weighting and the kernel parameters are tuned by quantum-behaved particle swarm optimization (QPSO) algorithm. The experimental results show that the proposed method has higher classification accuracy than typical RVM classifiers with single kernel.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

An appropriate selection of kernel function and its parameters is very important for the relevance vector machine (RVM) to achieve a good performance. To overcome the limitation of RVM with single kernel, a multi-scale RVM classification method based on intelligent optimization is proposed. Multiple Gaussian kernels are combined by linear weighting and the kernel parameters are tuned by quantum-behaved particle swarm optimization (QPSO) algorithm. The experimental results show that the proposed method has higher classification accuracy than typical RVM classifiers with single kernel.
基于智能优化的多尺度相关向量机分类
核函数及其参数的合理选择是相关向量机获得良好性能的关键。为了克服单核RVM的局限性,提出了一种基于智能优化的多尺度RVM分类方法。采用线性加权组合多个高斯核,并采用量子粒子群优化算法对核参数进行调优。实验结果表明,该方法比典型的单核RVM分类器具有更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信