Make your own retinal projector: retinal near-eye displays via metamaterials

Yoichi Ochiai, Kazuki Otao, Yuta Itoh, Shouki Imai, Kazuki Takazawa, Hiroyuki Osone, Atsushi Mori, Ippei Suzuki
{"title":"Make your own retinal projector: retinal near-eye displays via metamaterials","authors":"Yoichi Ochiai, Kazuki Otao, Yuta Itoh, Shouki Imai, Kazuki Takazawa, Hiroyuki Osone, Atsushi Mori, Ippei Suzuki","doi":"10.1145/3230744.3230810","DOIUrl":null,"url":null,"abstract":"Retinal projection is required for xR applications that can deliver immersive visual experience throughout the day. If general-purpose retinal projection methods can be realized at a low cost, not only could the image be displayed on the retina using less energy, but there is also a possibility of cutting off the weight of projection unit itself from the AR goggles. Several retinal projection methods have been previously proposed. Maxwellian optics based retinal projection was proposed in 1990s [Kollin 1993]. Laser scanning [Liao and Tsai 2009], laser projection using spatial light modulator (SLM) or holographic optical elements were also explored [Jang et al. 2017]. In the commercial field, QD Laser1 with a viewing angle of 26 degrees is available. However, as the lenses and iris of an eyeball are in front of the retina, which is a limitation of a human eyeball, the proposal of retinal projection is generally fraught with narrow viewing angles and small eyebox problems. Due to these problems, retinal projection displays are still a rare commodity because of their difficulty in optical schematics design.","PeriodicalId":226759,"journal":{"name":"ACM SIGGRAPH 2018 Posters","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2018 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3230744.3230810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Retinal projection is required for xR applications that can deliver immersive visual experience throughout the day. If general-purpose retinal projection methods can be realized at a low cost, not only could the image be displayed on the retina using less energy, but there is also a possibility of cutting off the weight of projection unit itself from the AR goggles. Several retinal projection methods have been previously proposed. Maxwellian optics based retinal projection was proposed in 1990s [Kollin 1993]. Laser scanning [Liao and Tsai 2009], laser projection using spatial light modulator (SLM) or holographic optical elements were also explored [Jang et al. 2017]. In the commercial field, QD Laser1 with a viewing angle of 26 degrees is available. However, as the lenses and iris of an eyeball are in front of the retina, which is a limitation of a human eyeball, the proposal of retinal projection is generally fraught with narrow viewing angles and small eyebox problems. Due to these problems, retinal projection displays are still a rare commodity because of their difficulty in optical schematics design.
制作你自己的视网膜投影仪:通过超材料制作视网膜近眼显示器
视网膜投影是全天提供沉浸式视觉体验的xR应用程序所必需的。如果能够以低成本实现通用的视网膜投影方法,不仅可以使用更少的能量在视网膜上显示图像,而且还有可能从AR护目镜中去除投影单元本身的重量。以前已经提出了几种视网膜投影方法。基于麦克斯韦光学的视网膜投影在20世纪90年代被提出[Kollin 1993]。激光扫描[Liao and Tsai 2009],使用空间光调制器(SLM)或全息光学元件的激光投影也进行了探索[Jang et . 2017]。在商业领域,可提供26度视角的QD Laser1。然而,由于眼球的晶状体和虹膜在视网膜的前面,这是人类眼球的局限性,视网膜投影的提议通常充满了狭窄的视角和小眼箱的问题。由于这些问题,由于光学原理图设计困难,视网膜投影显示器仍然是一种罕见的商品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信