Stock Price Movement Prediction Using Technical Analysis and Sentiment Analysis

Tommy Wijaya Sagala, M. Saputri, Rahmad Mahendra, I. Budi
{"title":"Stock Price Movement Prediction Using Technical Analysis and Sentiment Analysis","authors":"Tommy Wijaya Sagala, M. Saputri, Rahmad Mahendra, I. Budi","doi":"10.1145/3379310.3381045","DOIUrl":null,"url":null,"abstract":"This study aims to predict stock price movement using combination of technical analysis and sentiment analysis. When conducting stock transactions, the traders consider not only market activities but also the sentiments expressed within information reported in media. We build the classifier to categorize the price quotes into one of three classes: \"up\", \"down\", and \"constant\". We conduct the experiment with several algorithms, i.e. Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naïve Bayes. The results of our empirical study is that the highest accuracy achieved from the method combining features from historical data and online media sentiment, on 5 days trading window using the SVM algorithm.","PeriodicalId":348326,"journal":{"name":"Proceedings of the 2020 2nd Asia Pacific Information Technology Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 2nd Asia Pacific Information Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379310.3381045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This study aims to predict stock price movement using combination of technical analysis and sentiment analysis. When conducting stock transactions, the traders consider not only market activities but also the sentiments expressed within information reported in media. We build the classifier to categorize the price quotes into one of three classes: "up", "down", and "constant". We conduct the experiment with several algorithms, i.e. Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Naïve Bayes. The results of our empirical study is that the highest accuracy achieved from the method combining features from historical data and online media sentiment, on 5 days trading window using the SVM algorithm.
利用技术分析和情绪分析预测股价走势
本研究旨在运用技术分析与情绪分析相结合的方法来预测股价走势。在进行股票交易时,交易者不仅要考虑市场活动,还要考虑媒体报道的信息所表达的情绪。我们构建分类器将价格报价分为三类:“上涨”、“下跌”和“不变”。我们使用支持向量机(SVM)、k近邻(KNN)和Naïve贝叶斯等算法进行实验。我们的实证研究结果表明,结合历史数据和网络媒体情绪特征的方法在使用SVM算法的5天交易窗口上取得了最高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信