Parameter and Siting Optimization of Concentrated Solar Power - Parabolic Trough Distributed Generation Using Elitist Non-dominated Sorting Genetic Algorithm

Austin Lloyd C. Catap, R. A. Aguirre, John Paul P. Manzano
{"title":"Parameter and Siting Optimization of Concentrated Solar Power - Parabolic Trough Distributed Generation Using Elitist Non-dominated Sorting Genetic Algorithm","authors":"Austin Lloyd C. Catap, R. A. Aguirre, John Paul P. Manzano","doi":"10.1109/GPECOM58364.2023.10175820","DOIUrl":null,"url":null,"abstract":"As a unique approach to distributed generation (DG), concentrated solar power-parabolic trough (CSP-PT) technology utilizes solar energy to convert it into thermal energy, where the excess can be stored using thermal energy storage (TES) and dispatched during low insolation periods. However, the intricacy of selecting the appropriate values for the design parameters and location presents a challenge when integrating CSP-PT DG. Further, insufficient efforts were made in CSP DGs that consider both financial aspects and system improvements. Thus, this study utilized Non-dominated Sorting Genetic Algorithm (NSGA-II), a multi-objective evolutionary approach, in identifying optimal parameters and integration site for CSP-PT DG with and without TES in the IEEE 37-bus system, minimizing the levelized cost of energy (LCOE) and system losses. Precisely matching plant parameters and the location of the DG improves system performance and determines economic viability. Lower LCOE and fewer system losses are achieved in the system with TES at the expense of higher installed costs.","PeriodicalId":288300,"journal":{"name":"2023 5th Global Power, Energy and Communication Conference (GPECOM)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 5th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GPECOM58364.2023.10175820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a unique approach to distributed generation (DG), concentrated solar power-parabolic trough (CSP-PT) technology utilizes solar energy to convert it into thermal energy, where the excess can be stored using thermal energy storage (TES) and dispatched during low insolation periods. However, the intricacy of selecting the appropriate values for the design parameters and location presents a challenge when integrating CSP-PT DG. Further, insufficient efforts were made in CSP DGs that consider both financial aspects and system improvements. Thus, this study utilized Non-dominated Sorting Genetic Algorithm (NSGA-II), a multi-objective evolutionary approach, in identifying optimal parameters and integration site for CSP-PT DG with and without TES in the IEEE 37-bus system, minimizing the levelized cost of energy (LCOE) and system losses. Precisely matching plant parameters and the location of the DG improves system performance and determines economic viability. Lower LCOE and fewer system losses are achieved in the system with TES at the expense of higher installed costs.
聚光太阳能抛物槽分布式发电参数及选址优化的精英非支配排序遗传算法
作为一种独特的分布式发电(DG)方法,聚光太阳能-抛物槽(CSP-PT)技术利用太阳能将其转化为热能,其中多余的可以使用热能储存(TES)储存并在低日照期调度。然而,在集成CSP-PT DG时,为设计参数和位置选择适当值的复杂性提出了挑战。此外,在考虑财政方面和系统改进的共同发展方案发展目标方面没有作出足够的努力。因此,本研究利用非支配排序遗传算法(non - controlled Sorting Genetic Algorithm, NSGA-II)这一多目标进化方法,在IEEE 37总线系统中确定有和没有TES的CSP-PT DG的最优参数和集成位置,以最大限度地降低平均能源成本(LCOE)和系统损失。精确匹配工厂参数和DG的位置可以提高系统性能并决定经济可行性。采用TES的系统以较高的安装成本为代价,实现了更低的LCOE和更少的系统损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信