Using Topic Model for Intelligent Computer-Aided Diagnosis in Traditional Chinese Medicine

Jialin Ma, Yongjun Zhang
{"title":"Using Topic Model for Intelligent Computer-Aided Diagnosis in Traditional Chinese Medicine","authors":"Jialin Ma, Yongjun Zhang","doi":"10.1109/INCoS.2016.46","DOIUrl":null,"url":null,"abstract":"This research work presents the use of Latent Dirchlet Allocation (LDA), a generative topic modeling technique to extract latent patterns in Chinese Traditional Medical (CTM) diagnose and treatment data. It can help to capture the relationship between symptom and diseases. The purpose of the research is to acquire proficient medical knowledge by computer which can aid doctors to determine diagnosis. Our work proposed the framework which utilizes LDA to discoicvery latent patterns in the symptoms of medical cases and set up computer-aided diagnosis system in TCM.","PeriodicalId":102056,"journal":{"name":"2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Intelligent Networking and Collaborative Systems (INCoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCoS.2016.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This research work presents the use of Latent Dirchlet Allocation (LDA), a generative topic modeling technique to extract latent patterns in Chinese Traditional Medical (CTM) diagnose and treatment data. It can help to capture the relationship between symptom and diseases. The purpose of the research is to acquire proficient medical knowledge by computer which can aid doctors to determine diagnosis. Our work proposed the framework which utilizes LDA to discoicvery latent patterns in the symptoms of medical cases and set up computer-aided diagnosis system in TCM.
主题模型在中医智能计算机辅助诊断中的应用
本研究利用生成式主题建模技术Latent Dirchlet Allocation (LDA)来提取中医诊断和治疗数据中的潜在模式。它可以帮助捕捉症状和疾病之间的关系。研究的目的是通过计算机获取熟练的医学知识,帮助医生确定诊断。提出了利用LDA发现病例症状的潜在规律,建立中医计算机辅助诊断系统的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信