Modified LOLIMOT algorithm for nonlinear centralized Kalman filtering fusion

J. Rezaie, B. Moshiri, A. Rafati, Babak Nadjar Araabi
{"title":"Modified LOLIMOT algorithm for nonlinear centralized Kalman filtering fusion","authors":"J. Rezaie, B. Moshiri, A. Rafati, Babak Nadjar Araabi","doi":"10.1109/ICIF.2007.4408110","DOIUrl":null,"url":null,"abstract":"In this paper, first an enhanced neuro-fuzzy method for modeling nonlinear system is presented In this method we use EM algorithm for identification of local models, which gain us model mismatch covariance. The achieved model can be stated in state space model as a linear time-varying system. As the noise and model mismatch covariance is known, Kalman filter can be easily used for centralized estimation fusion. The simulations show that using centralized estimation fusion will enhance the estimation accuracy to a great deal.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, first an enhanced neuro-fuzzy method for modeling nonlinear system is presented In this method we use EM algorithm for identification of local models, which gain us model mismatch covariance. The achieved model can be stated in state space model as a linear time-varying system. As the noise and model mismatch covariance is known, Kalman filter can be easily used for centralized estimation fusion. The simulations show that using centralized estimation fusion will enhance the estimation accuracy to a great deal.
改进LOLIMOT算法的非线性集中卡尔曼滤波融合
本文首先提出了一种用于非线性系统建模的增强神经模糊方法,该方法利用EM算法对局部模型进行辨识,从而获得模型失配协方差。所得到的模型可以用状态空间模型表示为一个线性时变系统。由于噪声和模型失配协方差是已知的,卡尔曼滤波可以很容易地用于集中估计融合。仿真结果表明,采用集中式估计融合可以大大提高估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信