On Progressivity, Regressivity, and Proportionality: A Graphical Approach to the Teaching of the Income Tax Structure

Horacio Matos-Díaz
{"title":"On Progressivity, Regressivity, and Proportionality: A Graphical Approach to the Teaching of the Income Tax Structure","authors":"Horacio Matos-Díaz","doi":"10.2139/ssrn.3667948","DOIUrl":null,"url":null,"abstract":"Adopting the geometric concepts of a tangent line and a secant ray allows for determining the curvature (convex, concave, or linear) and the behavior of the marginal and average tax rates of an income increasing tax function. Such information helps to determine whether the tax function is progressive, regressive, or proportional, as well as the possibility that it pro-pends to equity in the distribution of the social tax burden. Thus, several issues of public policy can be rigorously analyzed specifying different income tax functions that satisfy determinate graphical shapes, circumventing the need to use the traditional approach of differential calculus.","PeriodicalId":431495,"journal":{"name":"Public Economics: Taxation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Public Economics: Taxation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3667948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Adopting the geometric concepts of a tangent line and a secant ray allows for determining the curvature (convex, concave, or linear) and the behavior of the marginal and average tax rates of an income increasing tax function. Such information helps to determine whether the tax function is progressive, regressive, or proportional, as well as the possibility that it pro-pends to equity in the distribution of the social tax burden. Thus, several issues of public policy can be rigorously analyzed specifying different income tax functions that satisfy determinate graphical shapes, circumventing the need to use the traditional approach of differential calculus.
论累进、累退和比例:所得税结构教学的图解方法
采用切线和割线的几何概念,可以确定曲率(凸、凹或线性)以及收入增加税收函数的边际和平均税率的行为。这些信息有助于确定税收函数是累进的、累退的还是比例的,以及它在社会税收负担分配中倾向于公平的可能性。因此,可以严格分析公共政策的几个问题,指定满足确定图形形状的不同所得税函数,从而避免使用传统的微分方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信