J. Bernsdorf, G. Berti, B. Chopard, J. Hegewald, M. Krafczyk, Dinan Wang, E. Lorenz, A. Hoekstra
{"title":"Towards Distributed Multiscale Simulation of Biological Processes","authors":"J. Bernsdorf, G. Berti, B. Chopard, J. Hegewald, M. Krafczyk, Dinan Wang, E. Lorenz, A. Hoekstra","doi":"10.1109/eScienceW.2011.19","DOIUrl":null,"url":null,"abstract":"The understanding of biological processes, e.g. related to cardio-vascular disease and treatment, can significantly be improved by numerical simulation. In this paper, we present an approach for a multiscale simulation environment, applied for the prediction of in-stent re-stenos is. Our focus is on the coupling of distributed, heterogeneous hardware to take into account the different requirements of the coupled sub-systems concerning computing power. For such a concept, which is an extension of the standard multiscale computing approach, we want to apply the term Distributed Multiscale Computing.","PeriodicalId":267737,"journal":{"name":"2011 IEEE Seventh International Conference on e-Science Workshops","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Seventh International Conference on e-Science Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScienceW.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The understanding of biological processes, e.g. related to cardio-vascular disease and treatment, can significantly be improved by numerical simulation. In this paper, we present an approach for a multiscale simulation environment, applied for the prediction of in-stent re-stenos is. Our focus is on the coupling of distributed, heterogeneous hardware to take into account the different requirements of the coupled sub-systems concerning computing power. For such a concept, which is an extension of the standard multiscale computing approach, we want to apply the term Distributed Multiscale Computing.