A Crowd Flow Segmentation Method based on Deep Motion Transformation Network

Xinfeng Zhang, Qiling Ni, Shuhan Chen, Baoqing Yang, Bin Li
{"title":"A Crowd Flow Segmentation Method based on Deep Motion Transformation Network","authors":"Xinfeng Zhang, Qiling Ni, Shuhan Chen, Baoqing Yang, Bin Li","doi":"10.1145/3449388.3449396","DOIUrl":null,"url":null,"abstract":"The crowd motion in public places is generally disorderly but locally orderly. Therefore, dividing the crowd flow into regions with basically consistent motion states can help us better understand and analyze the crowd's motion states. For this reason, a deep motion transformation network is proposed to segment the crowd flow into different motion states, which avoids the problem of parameter selection based on the clustering method. We test the method in different crowd density scenarios, and the experimental results show that the proposed method can achieve a better segmentation effect than the previous methods.","PeriodicalId":326682,"journal":{"name":"2021 6th International Conference on Multimedia and Image Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Multimedia and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3449388.3449396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The crowd motion in public places is generally disorderly but locally orderly. Therefore, dividing the crowd flow into regions with basically consistent motion states can help us better understand and analyze the crowd's motion states. For this reason, a deep motion transformation network is proposed to segment the crowd flow into different motion states, which avoids the problem of parameter selection based on the clustering method. We test the method in different crowd density scenarios, and the experimental results show that the proposed method can achieve a better segmentation effect than the previous methods.
基于深度运动变换网络的人群流分割方法
公众场所的人群活动总体上是无序的,但局部是有序的。因此,将人群流划分为运动状态基本一致的区域,可以帮助我们更好地理解和分析人群的运动状态。为此,提出了一种深层运动变换网络,将人群流分割成不同的运动状态,避免了基于聚类方法的参数选择问题。我们在不同人群密度的场景下对该方法进行了测试,实验结果表明,该方法可以取得比以往方法更好的分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信