Syntactic Features for High Precision Word Sense Disambiguation

David Martínez, Eneko Agirre, Lluís Màrquez i Villodre
{"title":"Syntactic Features for High Precision Word Sense Disambiguation","authors":"David Martínez, Eneko Agirre, Lluís Màrquez i Villodre","doi":"10.3115/1072228.1072340","DOIUrl":null,"url":null,"abstract":"This paper explores the contribution of a broad range of syntactic features to WSD: grammatical relations coded as the presence of adjuncts/arguments in isolation or as subcategorization frames, and instantiated grammatical relations between words. We have tested the performance of syntactic features using two different ML algorithms (Decision Lists and AdaBoost) on the Senseval-2 data. Adding syntactic features to a basic set of traditional features improves performance, especially for AdaBoost. In addition, several methods to build arbitrarily high accuracy WSD systems are also tried, showing that syntactic features allow for a precision of 86% and a coverage of 26% or 95% precision and 8% coverage.","PeriodicalId":437823,"journal":{"name":"Proceedings of the 19th international conference on Computational linguistics -","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th international conference on Computational linguistics -","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1072228.1072340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

This paper explores the contribution of a broad range of syntactic features to WSD: grammatical relations coded as the presence of adjuncts/arguments in isolation or as subcategorization frames, and instantiated grammatical relations between words. We have tested the performance of syntactic features using two different ML algorithms (Decision Lists and AdaBoost) on the Senseval-2 data. Adding syntactic features to a basic set of traditional features improves performance, especially for AdaBoost. In addition, several methods to build arbitrarily high accuracy WSD systems are also tried, showing that syntactic features allow for a precision of 86% and a coverage of 26% or 95% precision and 8% coverage.
高精度词义消歧的句法特征
本文探讨了广泛的语法特征对WSD的贡献:编码为孤立的辅词/参数或子分类框架的语法关系,以及单词之间的实例化语法关系。我们在Senseval-2数据上使用两种不同的ML算法(Decision Lists和AdaBoost)测试了语法特征的性能。在一组基本的传统特性中添加语法特性可以提高性能,特别是对于AdaBoost。此外,还尝试了几种构建任意高精度WSD系统的方法,结果表明,语法特征允许86%的精度和26%的覆盖率或95%的精度和8%的覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信