Envisioning user models for adaptive visualization

Jae-wook Ahn, Peter Brusilovsky
{"title":"Envisioning user models for adaptive visualization","authors":"Jae-wook Ahn, Peter Brusilovsky","doi":"10.1109/VAST.2008.4677373","DOIUrl":null,"url":null,"abstract":"Adaptive search systems apply user models to provide better separation of relevant and non-relevant documents in a list of results. This paper presents our attempt to leverage this ability of user models in the context of visual information analysis. We developed an adaptive visualization approach for presentation and exploration of search results. We simulated a visual intelligence search/analysis scenario with log data extracted from an adaptive information foraging study and were able to verify that our method can improve the ability of traditional relevance visualization to separate relevant and irrelevant information.","PeriodicalId":213107,"journal":{"name":"2008 IEEE Symposium on Visual Analytics Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Symposium on Visual Analytics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2008.4677373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Adaptive search systems apply user models to provide better separation of relevant and non-relevant documents in a list of results. This paper presents our attempt to leverage this ability of user models in the context of visual information analysis. We developed an adaptive visualization approach for presentation and exploration of search results. We simulated a visual intelligence search/analysis scenario with log data extracted from an adaptive information foraging study and were able to verify that our method can improve the ability of traditional relevance visualization to separate relevant and irrelevant information.
为自适应可视化设想用户模型
自适应搜索系统应用用户模型,在结果列表中更好地分离相关和不相关文档。本文介绍了我们在视觉信息分析上下文中利用用户模型的这种能力的尝试。我们开发了一种自适应的可视化方法来展示和探索搜索结果。我们利用自适应信息觅食研究中提取的日志数据模拟了一个视觉智能搜索/分析场景,并验证了我们的方法可以提高传统关联可视化分离相关和不相关信息的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信